Перейти к основному содержанию

ОГЭ

(C1) Алгебраические выражения, уравнения, неравенства и их системы

Неравенства

Задание 2309

 Ре­ши­те не­ра­вен­ство: $$\frac{x^{2}}{3}\geq \frac{3x+3}{4}$$

Ответ: ($$-\infty$$; -0,75] $$\cup$$ [3; $$+\infty$$)
Скрыть
$$\frac{x^{2}}{3}\geq \frac{3x+3}{4}|*12\Leftrightarrow$$$$4x^{2}-9x-9\geq 0$$
Найдем значения х , при которых выражение $$4x^{2}-9x-9=0\Leftrightarrow$$$$4(x-3)(x+0,75)=0$$
$$D=81+144=225$$
$$x_{1}=\frac{9+15}{8}=3$$
$$x_{1}=\frac{9-15}{8}=-0,75$$
$$4(x-3)(x+0,75)\geq0$$
Отметим значения на координатной прямой, расставим знаки значений, которые принимает выражение $$4(x-3)(x+0,75)$$ на полученных промежутках:
Точки закращенные, так как неравенство нестрогое. Выберем промежутки, где значение выражение больше или равно 0: ($$-\infty$$; -0,75] $$\cup$$ [3; $$+\infty$$)

Задание 2310

Ре­ши­те не­ра­вен­ство: $$(\sqrt{3}-1,5)(3-2x)>0$$

Ответ: ($$-\infty$$; 1,5)
Скрыть

$$(\sqrt{3}-1,5)(3-2x)>|\div(\sqrt{3}-1,5)>0\Leftrightarrow$$$$3-2x>0\Leftrightarrow$$$$3>2x|:2\Leftrightarrow$$$$x<1,5$$

Задание 2311

Ре­ши­те не­ра­вен­ство: $$(x-3)(2x+3)<-7$$

Ответ: $$(-0,5; 2)$$
Скрыть

$$(x-3)(2x+3)<-7\Leftrightarrow$$$$2x^{2}+3x-6x-9+7<0\Leftrightarrow$$$$2x^{2}-3x-2<0$$

Найдем значения х, при которых выражение $$2x^{2}-3x-2=0$$

$$D=9+16=25$$

$$x_{1}=\frac{3+5}{4}=2$$

$$x_{2}=\frac{3-5}{4}=-0,5$$

Отметим полученные точки на координатной прямой, расставим знаки значений, которые принимает выражение $$2x^{2}-3x-2$$ на полученных промежутках:

Точки пустые, так как неравенство строгое. Выберем промежутки, где вырадение принимает отрицательные значения:$$(-0,5; 2)$$

Задание 2312

Ре­ши­те не­ра­вен­ство: $$\frac{11x-4}{5}\geq\frac{x^{2}}{2}$$

Ответ: $$[0,4; 4]$$
Скрыть
$$\frac{11x-4}{5}\geq\frac{x^{2}}{2}|*10\Leftrightarrow$$$$22x-8-5x^{2}\geq0|*(-1)\Leftrightarrow$$$$5x^{2}+8-22x\leq0$$
Найдем значения, при которых выражение $$5x^{2}+8-22x=0$$
$$D=484-160=324$$
$$x_{1}=\frac{22+18}{10}=4$$
$$x_{2}=\frac{22-18}{10}=0,4$$
Отметим полученные точки на координатной прямой и расставим знаки значений, которые принимает выражение $$5x^{2}+8-22x$$ на полученных промежутках:
Точки закращенные, так как неравенство нестрогое. Выберем отрезок, на котором выражени принимает отрицательные значения: $$[0,4; 4]$$

Задание 2313

Ре­ши­те не­ра­вен­ство: $$x^{2}(-x^{2}-64)\leq 64(-x^{2}-64)$$

Ответ: $$(-\infty; -8]; [8; +\infty)$$
Скрыть

$$x^{2}(-x^{2}-64)\leq 64(-x^{2}-64)\Leftrightarrow$$$$x^{2}(-x^{2}-64)-64(-x^{2}-64)\leq0\Leftrightarrow$$$$(-x^{2}-64)(x^{2}-64)\leq0$$

Число $$-x^{2}-64<0$$ при всех Х. Делим на него, меняем знак неравенства (т.к. делим на отрицательное): $$x^{2}-64\geq0$$

Найдем все х, при которых выражение  $$x^{2}-64=0$$

$$x^{2}=64\Leftrightarrow$$$$x=\pm 8$$. Отметим полученные значения на координатной прямой и расставим знаки значений, которые принимает выражение $$x^{2}-64$$ на полученных отрезках:

Точки закращенные, так как неравенство строгое. Выберем отрезки, где выражение больше или равно 0: $$(-\infty; -8]; [8; +\infty)$$

Задание 2314

Ре­ши­те не­ра­вен­ство: $$\frac{-14}{x^{2}+2x-15}\leq0$$

Ответ: $$(-\infty; -5)$$ $$\cup$$ $$(3; +\infty)$$
Скрыть

ОДЗ: $$x^{2}+2x-15\neq0$$

$$\left\{\begin{matrix}x_{1}+x_{2}\neq-2\\x_{1}\cdot x_{2}\neq-15\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x_{1}\neq-5\\x_{2}\neq3\end{matrix}\right.$$

$$\frac{-14}{(x-3)(x+5)}\leq0$$ $$\Leftrightarrow$$ $$(x-3)(x+5)>0$$

Начертим координатную прямую и отметим значения х , при которых знаменатель равен нулю (точки пустые согласно ОДЗ), расставим знаки, которые принимает выражение $$(x-3)(x+5)$$ на полученных промежутках:

Выберем промежутки, на которых выражение $$(x-3)(x+5)$$ принимает положительные значения: $$(-\infty; -5)$$ $$\cup$$ $$(3; +\infty)$$

Задание 2315

Ре­ши­те не­ра­вен­ство: $$\frac{-10}{(x-3)^{2}-5}\geq0$$

Ответ: $$(3-\sqrt{5}; 3+\sqrt{5})$$
Скрыть

$$\frac{-10}{(x-3)^{2}-5}\geq0$$ $$\Leftrightarrow$$ $$(x-3)^{2}-5<0$$ $$\Leftrightarrow$$ $$(x-3-\sqrt{5})(x-3+\sqrt{5})<0$$ 

Отметим на координатной прямой значения х, при которых выражение $$(x-3-\sqrt{5})(x-3+\sqrt{5})$$ равно 0 и расставим знаки значений, которые принимает данное выражение на полученных промежутках:

Выберем те, в которых данное выражение принимает отрицательные значения: $$(3-\sqrt{5}; 3+\sqrt{5})$$

 

Задание 2316

Ре­ши­те не­ра­вен­ство: $$(x-7)^{2}<\sqrt{11}(x-7)$$

Ответ: $$(7; 7+\sqrt{11})$$
Скрыть

$$(x-7)^{2}-\sqrt{11}(x-7)<0$$ 

$$(x-7)(x-7-\sqrt{11})<0$$ 

Начертим координатную прямую, отметим значения х при которых выражение $$(x-7)(x-7-\sqrt{11})$$ равно нулю и расставим знаки значений, которые принимает данное выражение на полученных промежутках:

Выберем те, в которых выражение принимает отрицательные значения: $$(7; 7+\sqrt{11})$$

Задание 2317

Ре­ши­те не­ра­вен­ство: $$(4x-6)^{2}\geq(6x-4)^{2}$$

Ответ: $$[-1; 1]$$
Скрыть

$$(4x-6)^{2}-(6x-4)^{2}\geq0\Leftrightarrow$$$$(4x-6-6x+4)(4x-6+6x-4)\geq0\Leftrightarrow$$$$(-2x-2)(10x-10)\geq0\Leftrightarrow$$$$-2(x+1)\cdot10(x-1)\geq0\Leftrightarrow$$$$(x+1)(x-1)\leq0$$

Начертим координатую прямую, отметим значения х при которых выражение $$(x+1)(x-1)$$ равно 0 и отметим знаки значений, которые принимает данное выражение на полученных промежутках:

Выберем те, в которых выражение неположительное : $$[-1; 1]$$

Задание 2318

Ре­ши­те не­ра­вен­ство: $$2x^{2}-3x>0$$

Ответ: $$(-\infty; 0)$$ $$\cup$$ $$(1,5; +\infty)$$
Скрыть

$$x(2x-3)>0$$ Найдем значения, при которых выражение $$x(2x-3)$$ равно 0: $$x=0$$ или $$2x-3=0$$ $$\Rightarrow$$ $$x=1,5$$. Отметим на координатной прямой полученные значения и расставим знаки значений, которые принимает данное вырадение на полученных промежутках:

Выберем те, в которых выражение принимает положительные значения: $$(-\infty; 0)$$ $$\cup$$ $$(1,5; +\infty)$$

 

Задание 2667

Решите неравенство: $$\frac{-22}{x^{2}-2x-35}\leq0$$

Ответ: $$x\in (-\infty; -5) \cup (7; +\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\frac{-22}{x^{2}-2x-35}\leq0$$ $$\Leftrightarrow$$ $$\frac{22}{(x+5)(x-2)}\geq0$$ $$x^{2}-2x-35\neq 0$$ $$\left\{\begin{matrix}x_{1}+x_{2}\neq 2\\x_{1}\cdot x_{2}\neq-35\end{matrix}\right.$$ $$\left\{\begin{matrix}x_{1}\neq -5\\x_{2}=7\end{matrix}\right.$$

Отметим точки на координатной прямой и найдем какой знак принимает левая часть на полученных интервалах

Задание 2771

Найдите наибольшее целое число, удовлетворяющее неравенству $$x(3-\sqrt{10})> 2,5(3-\sqrt{10})$$

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
$$x(3-\sqrt{10})> 2,5(3-\sqrt{10})$$ | : $$(3-\sqrt{10})$$

$$x< 2,5$$ $$\Rightarrow$$ xнаиб=2

Задание 3015

Решите неравенство $$\frac{x^{2}+7x+10}{\left|x+2\right|}\leq 0$$

Ответ: $$x\in [-5; -2)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\frac{x^{2}+7x+10}{\left|x+2\right|}\leq 0$$ $$\left\{\begin{matrix}x^{2}+7x+10\leq 0\\x+2\neq 0\end{matrix}\right.$$ $$x^{2}+7x+10=0$$ $$\left\{\begin{matrix}x_{1}+x_{2}=-7\\x_{1}\cdot x_{2}=10\end{matrix}\right.$$ $$x_{1}=-2$$ $$x_{2}=-5$$ $$x\in [-5; -2)$$

Задание 3099

Решите неравенство: $$(x+1-\sqrt{3})^{2}\cdot(x-\sqrt{6}+2)>0$$

Ответ: $$x\in(\sqrt{6}-2;\sqrt{3}-1)\cup(\sqrt{3}-1;+\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$(x+1-\sqrt{3})^{2}\cdot(x-\sqrt{6}+2)>0$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}(x-\sqrt{6}+2)>0\\x+1-\sqrt{3}\neq0\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x>\sqrt{6}-2\\x\neq\sqrt{3}-1\end{matrix}\right.$$

Задание 3139

Решите неравенство $$\frac{x-3}{x^2-1}+\frac{1}{x+1}\leq \frac{x-2}{x(x-1)}$$

Ответ: $$(-\infty;-1);(0;1);(1;2]$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Текстовое решение временно недоступно, вы можете его увидеть в видео в начале варианта

Задание 3992

Решите неравенство $$(\frac{x+2}{8-x})^{2}\leq\frac{1}{16}$$

Ответ: $$x\in[-\frac{16}{3};0]$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$(\frac{x+2}{8-x})^{2}\leq\frac{1}{16}$$

ОДЗ: $$8-1\neq0$$

$$x\neq8$$

$$\frac{x+2}{8-x}=y$$

$$y^{2}\leq\frac{1}{16}$$

$$y^{2}-(\frac{1}{4})^{2}\leq0$$

$$\left\{\begin{matrix}y\geq-\frac{1}{4}\\y\leq\frac{1}{4}\end{matrix}\right.$$ $$\Leftrightarrow$$

$$\left\{\begin{matrix}\frac{x+2}{8-x}\geq-\frac{1}{4}\\\frac{x+2}{8-x}\leq\frac{1}{4}\end{matrix}\right.$$

1) $$\frac{x+2}{8-x}+\frac{1}{4}\geq0$$ $$\Leftrightarrow$$

$$\frac{4x+8+8-x}{4(8-x)}\geq0$$

$$\frac{3x+16}{8-x}\geq0$$ $$\Leftrightarrow$$

$$x\in[-\frac{16}{3};8)$$

2) $$\frac{x+2}{8-x}-\frac{1}{4}\leq0$$ $$\Leftrightarrow$$

$$\frac{4x+8-8+x}{4(8-x)}\leq0$$

$$\frac{5x}{8-x}\leq0$$ $$\Leftrightarrow$$

$$x\in(-\infty;0]\cup(8;+\infty)$$

Найдем пересечение ответов: $$x\in[-\frac{16}{3};0]$$

Задание 4532

Решите неравенство $$\frac{8-4x}{x+1}>4+\frac{x+1}{x-2}$$

Ответ: $$x\in(-1;1)\cup(1;2)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\frac{8-4x}{x+1}>4+\frac{x+1}{x-2}$$; $$\frac{(8-4x)(x-2)-4(x+1)(x+2)-(x+1)(x+1)}{(x+1)(x-2)}>0$$; $$\frac{8x-16-4x^{2}+8x-4x^{2}+8x-4x+8-x^{2}-2x-1}{(x+1)(x-2)}>0$$; $$\frac{-9x^{2}+18x-9}{(x+1)(x-2)}>0$$; $$\frac{-9(x-1)^{2}}{(x+1)(x-2)}>0$$; $$\frac{(x-1)^{2}}{(x+1)(x-2)}<0$$;

$$x\in(-1;1)\cup(1;2)$$

Задание 4846

Решите неравенство $$\frac{x}{1-x}\leq x-6$$

Ответ: $$x\in(1;3-\sqrt{3}]\cup[3+\sqrt{3};+\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

ОДЗ: $$1-x\neq0$$; $$\frac{x}{1-x}-\frac{(x-6)(1-x)}{1-x}\leq0$$; $$\frac{x-x+x^{2}+6-6x}{1-x}\leq0$$; $$\frac{x^{2}-6x+6}{1-x}\leq0$$; $$x^{2}-6x+6=0$$; $$D=36-24=12$$; $$x_{1,2}=\frac{6\pm\sqrt{12}}{2}=3\pm\sqrt{3}$$

Задание 4894

Решите неравенство $$(\frac{x+1}{4-x})^{2}\leq\frac{1}{4}$$

Ответ: $$x \in [-6;\frac{2}{3}]$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

ОДЗ: $$4-x\neq 0 \Leftrightarrow x\neq 4$$

$$(\frac{x+1}{4-x})^{2}\leq\frac{1}{4}\Leftrightarrow $$$$(\frac{x+1}{4-x})^{2} - (\frac{1}{2})^{2}\leq 0\Leftrightarrow $$$$(\frac{x+1}{2(4-x)}-\frac{1}{2})(\frac{x+1}{2(4-x)}+\frac{1}{2})\leq 0\Leftrightarrow $$$$\frac{2x+2-4+x}{2(4-x)}*\frac{2x+2+4-x}{2(4-x)}\leq 0\Leftrightarrow $$$$\frac{3x-2}{2(4-x)}*\frac{x+6}{2(4-x)}\leq 0\Leftrightarrow $$$$\frac{(3x-2)(x+6)}{4(4-x)^{2}}\leq 0\Leftrightarrow $$

Приравняем к нулю числитель и знаменатель, отметим полученные точки на координатной прямой, расставим знаки, которые принимает выражение слева от нуля ( неравенство не строгое, значит точки числителя будут закрашенные):

В итоге получаем решение: $$x \in [-6;\frac{2}{3}]$$

Задание 4941

Решите неравенство $$x^{2}(-x^{2}-4)\leq4(-x^{2}-4)$$

Ответ: $$(-\infty;-2]\cup[2;+\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$x^{2}(-x^{2}-4)\leq4(-x^{2}-4)\Leftrightarrow$$$$x^{2}(-x^{2}-4)-4(-x^{2}-4)\leq0\Leftrightarrow$$$$(-x^{2}-4)(x^{2}-4)\leq0$$ $$(-x^{2}-4)$$ - однозначно меньше нуля, так как число $$-x^{2}$$ - отрицательное при всех х. Потому поделим обе части на данной выражение и поменяем знак неравенства на противоположный (так как делили на отрицательное число): $$(x^{2}-4)\geq0\Leftrightarrow$$$$\left\{\begin{matrix}x\leq -2\\ x\geq 2\end{matrix}\right.$$

Задание 4988

 Решите неравенство $$(x+2)^{3}\geq4(x+2)$$

Ответ: $$x\in[-4;-2]\cup[0;+\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$(x+2)^{3}-4(x+2)\geq0\Leftrightarrow$$$$(x+2)((x+2)^{2}-4)\geq0\Leftrightarrow$$$$(x+2)(x+2+2)(x+2-2)\geq0\Leftrightarrow$$$$(x+2)(x+4)x\geq0$$. То есть получили выражение $$f(x)=(x+2)(x+4)x$$

Отметим на координатной прямой в каких случаях выражение полученное равно нули, расставим знаки, которые оно принимает:

Нам необходимы те промежутки, где выражение положительное, то есть: $$x\in[-4;-2]\cup[0;+\infty)$$

 

Задание 5124

Найдите наибольшее целое число, удовлетворяющее неравенству $$x(1-\sqrt{2})>3,8(1-\sqrt{2})$$

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
$$x(1-\sqrt{2})< 3,8(1-\sqrt{2}) |:1-\sqrt{2}$$ ($$1-\sqrt{2} < 0$$ так как $$\sqrt{2} \approx 1,4$$)
Следовательно, получим, что $$x< 3,8$$. Тогда наибольшее целое значение , удовлетворяющее полученном решению будет равно 3

Задание 5364

Найдите сумму целых отрицательных решений неравенства $$\frac{x^{2}+2x+10}{x-2} \geq -3$$

Ответ: -10
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\frac{x^{2}+2x+10}{x-2} \geq -3\Leftrightarrow$$$$\frac{x^{2}+2x+10}{x-2}+3 \geq 0\Leftrightarrow$$$$\frac{x^{2}+2x+10}{x-2}+\frac{3(x-2)}{x-2} \geq 0\Leftrightarrow$$$$\frac{x^{2}+2x+10+3x-6}{x-2} \geq 0\Leftrightarrow$$$$\frac{x^{2}+5x+4}{x-2} \geq 0$$

Найдем при каких значениях x числитель дроби равен нулю и отметим эти значения (закрашенные, так как неравенство нестрогое), а так же значение, когда знаменатель равен нулю (пустое, так как мы должны исключить данное значение из ОДЗ) на координатной прямой и расставим знаки значений, которые принимает дробь на полученных промежутках:

Нам необходимо выбрать те промежутки, где дробь принимает положительные значения, а так же из данных промежутков найти сумму всех целых отрицательных значений: $$-4+(-3)+(-2)+(-1)=-10$$

Задание 6353

Решите неравенство $$\frac{(x+2)(x+1)}{x^{2}-|x|-2}\leq -3x$$

Ответ: $$x \in (-\infty ;-2)\cup(-2;\frac{2}{3})\cup [1; 2)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Область определения: $$x^{2}-|x|-2\neq 0\Leftrightarrow$$$$|x|\neq 2, |x|\neq -1\Leftrightarrow$$$$x\neq \pm 2$$

     Раскроем модуль:

1)   При $$x\geq 0 \Rightarrow$$ $$\frac{(x+2)(x+1)}{x^{2}-x-2} \leq -3x\Leftrightarrow$$ $$\frac{(x+2)(x-1)}{(x-2)(x+1)}\leq -3x\Leftrightarrow$$ $$\frac{x+2}{x-2}+3x\leq 0$$

     Рассматриваем числитель дроби, чтобы разбить его на множители: $$3x^{2}-5x+2=0$$

$$D=25-24=1$$

$$x_{1}=\frac{5+1}{6}=1$$

$$x_{2}=\frac{5-1}{6}=\frac{2}{3}$$

     Следовательно,$$\frac{(x-\frac{2}{3})(x+1)}{x-2}\leq 0$$

2)   При $$x<0 \Rightarrow$$$$\frac{(x+2)(x+1)}{x^{2}+x-2}\leq -3x\Leftrightarrow$$ $$\frac{(x+2)(x+1)}{(x+2)(x-1)}+3x\leq 0\Leftrightarrow$$$$\frac{x+1}{x-1}+3x\leq 0\Leftrightarrow$$ $$\frac{x+1+3x^{2}-3x}{x-1}\leq 0\Leftrightarrow$$ $$\frac{3x^{2}-2x+1}{x-1}\leq 0$$

     Рассмотрим числитель полученной дроби:

$$3x^{2}-2x+1=0$$

$$D=4-12<0$$

     Следовательно, числитель данной дроби всегда положителен и не влияет на знак неравенства: $$\frac{1}{x-1}\leq 0$$

     С учетом обрасти опредеделения:

$$x \in (-\infty ;-2)\cup(-2;\frac{2}{3})\cup [1; 2)$$

Задание 6400

Найдите область определения функции $$y=\sqrt{\frac{3x^{2}-2x-5}{x-2}}$$

Ответ: $$[-1 ;\frac{5}{3}]\cup (2;+\infty )$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Область определения D(y):

$$\left\{\begin{matrix}\frac{3x^{2}-2x-5}{x-2}\geq 0\\x-2\neq 0 & &\end{matrix}\right.$$

     Рассмотрим числитель дроби :$$3x^{2}-2x-5=0$$

$$D=4+60=64$$

$$x_{1}=\frac{2+8}{6}=\frac{5}{3}$$

$$x_{2}=\frac{2-8}{6}=-1$$

     Получаем :

$$\left\{\begin{matrix}\frac{(x-\frac{5}{3})(x+1)}{x-2}\geq 0\\x\neq 2\end{matrix}\right.$$

Тогда: $$x\in [-1 ;\frac{5}{3}]\cup (2;+\infty )$$

Задание 6738

Найдите область определения выражения $$\sqrt{x-\frac{8}{x-2}}$$

Ответ: $$[-2;2)\cup [4;+\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\sqrt{x-\frac{8}{x-2}}\Leftrightarrow$$ $$\left\{\begin{matrix}x-2\neq 0\\x-\frac{8}{x-2}\geq 0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x\neq 2\\\frac{x^{2}-2x-8}{x-2}\geq 0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x\neq 2\\\frac{(x-4)(x+2)}{x-2}\geq 0\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}x\geq 4\\\left\{\begin{matrix}x\leq 2\\x>-2\end{matrix}\right.\end{matrix}\right.$$

Задание 6952

Решите неравенство $$(\frac{2x+1}{5-x})^{2}\leq \frac{1}{25}$$

Ответ: $$[-\frac{10}{9};0]$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$(\frac{2x+1}{5-x})^{2}\leq \frac{1}{25}$$$$\Leftrightarrow$$ $$(\frac{2x+1}{5-x})^{2}-(\frac{1}{5})^{2}\leq 0$$$$\Leftrightarrow$$ $$(\frac{2x+1}{5-x}-\frac{1}{5})(\frac{2x+1}{5-x}+\frac{1}{5})\leq 0$$$$\Leftrightarrow$$ $$\frac{10x+5-5+x}{5(5-x)}*\frac{10x+5+5-x}{5(5-x)}\leq 0$$$$\Leftrightarrow$$ $$\frac{11x*(9x+10)}{25(5-x)^{2}}\leq 0$$$$\Leftrightarrow$$ $$\left\{\begin{matrix}x(9x+10)\leq 0\\5-x\neq 0\end{matrix}\right.$$$$\Leftrightarrow$$ $$x \in [-\frac{10}{9};0]$$

Задание 7133

Решите неравенство $$x \geq \frac{5x-14}{25}+\frac{3x-5}{20}-9\frac{3}{4}$$

Ответ: $$(-\infty; -\frac{1056}{65})$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$x\geq \frac{5x-14}{25}+\frac{3x-5}{20}-9\frac{4}{5}|*100\Leftrightarrow$$ $$100x\geq 20x-56+15x-25-975\Leftrightarrow$$$$100x-35x\geq -1056\Leftrightarrow$$$$65x\geq -1056\Leftrightarrow$$$$x\geq -\frac{1056}{65}\Leftrightarrow$$

Задание 7247

Решите неравенство $$\frac{1}{x+1}-\frac{2}{x^{2}-x+1}\leq \frac{1-2x}{x^{3}+1}$$

Ответ: $$x \in (-\infty ; -1)\cup (-1; 2]$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\frac{1}{x+1}-\frac{2}{x^{2}-x+1}\leq \frac{1-2x}{x^{3}+1}$$

     ОДЗ: $$x^{3}+1\neq 0\Rightarrow x\neq -1$$

     Решение: $$\frac{1}{x+1}-\frac{2}{x^{2}-x+1}-\frac{1-2x}{(x+1)(x^{2}-x+1)}\leq 0\Leftrightarrow$$$$\frac{x^{2}-x+1-2x-2-1+2x}{x^{3}+1}\leq 0\Leftrightarrow$$ $$\frac{x^{2}-x-2}{x^{3}+1}\leq 0\Leftrightarrow$$ $$\frac{(x-2)(x+1)}{x^{3}+1}\leq 0\Leftrightarrow$$ $$\frac{x-2}{x^{2}-x+1}\leq 0\Leftrightarrow$$ $$x-2\leq 0\Rightarrow$$ $$x\leq 2$$

     С учетом ОДЗ: $$x \in (-\infty ; -1)\cup (-1; 2]$$

Задание 7392

Решите неравенство $$(x^{2}+3x)(-x^{2}-9)\geq 4(-x^{2}-9)$$

Ответ: [-4;1]
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7494

Решите неравенство $$(x+3)^{3}\geq 36(x+3)$$

Ответ: $$[-9;-3];[3;+\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 8396

Решите неравенство $$\frac{(x-2)(x^{2}-4)-(7+x-x^{2})(x^{2}-4)}{x^{4}-81}\geq 0$$
Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

ОДЗ: $$x^{4}-81\neq0$$ $$\Rightarrow$$ $$x^{4}\neq81$$ $$\Rightarrow$$ $$x\neq\pm3$$

Решение: $$\frac{(x^{2}-4)(x-2-7-x+x^{2})}{(x^{2}-9)(x^{2}+9)}\geq0$$ $$\Leftrightarrow$$ $$\frac{(x-2)(x+2)(x^{2}-9)}{(x^{2}-9)(^{2}+9)}\geq0$$ $$\Leftrightarrow$$ $$\frac{(x-2)(x+2)}{x^{2}+9}\geq0$$ $$\Rightarrow$$ $$(x-2)(x+2)\geq0$$ $$\Rightarrow$$ $$x\in(-\infty;-2]\cup[2;+\infty)$$

С учетом ОДЗ: $$x\in(-\infty;-3)\cup(-3;-2]\cup[2;3)\cup(3;+\infty)$$

 

Задание 8944

Решите неравенство: $$(x-7)^{2}<\sqrt{11}(x-7)$$

Ответ: $$(7;7+\sqrt{7})$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8997

Решите неравенство: $$(x-5)^{2}<\sqrt{7}(x-5)$$

Ответ: $$(5;5+\sqrt{7})$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9612

Решите неравенство $$-\frac{12}{x^{2}-2x-15}\geq 0$$

Ответ: (-3;5)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9761

Решите неравенство: $$-\frac{12}{4+3x-x^{2}}\leq 0$$
Ответ: $$(-1;4)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9921

Решите неравенство: $$(x-9)^{2}\geq \sqrt{2}(x-9)$$
Ответ: $$(-\infty;9]\cup[9+\sqrt{2};+\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9956

Решите неравенство $$-\frac{12}{x^{2}-2x-15}\geq 0$$

Ответ: (-3;5)
 

Задание 10359

Решите неравенство в действительных числах $$(x-3)^{2}<\sqrt{5}(x-3)$$
Ответ: $$(3;3+\sqrt{5})$$
 

Задание 11190

Решите неравенство: $$\frac{-18}{(x+4)^{2}-10}\geq 0$$

Ответ: $$(-4-\sqrt{10};-4+\sqrt{10})$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11212

Решите неравенство: $$\frac{-16}{(x+2)^{2}-5}\leq 0$$
Ответ: $$(-\infty;-2-\sqrt{5});(\sqrt{5}-2;+\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11355

Решите неравенство $$(x-7)^{2}<\sqrt{11}(x-7)$$

Ответ: $$(7; 7+\sqrt{11})$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11398

Решите неравенство $$(x-5)^{2}<\sqrt{7}(x-5)$$

Ответ: $$(5; 5+\sqrt{7})$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11624

Решите неравенство $$\frac{x^{2}}{3}<\frac{3x+3}{4}$$
Ответ: (-0,75;3)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11875

Решите неравенство $$-\frac{12}{x^{2}-2x-15}\geq 0$$

Ответ: (-3;5)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11897

Решите неравенств $$-\frac{12}{4+3x-x^{2}}\leq 0$$

Ответ: (-1;4)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12146

Решите неравенство $${\left(5x+2\right)}^2\ge {\left(4-2x\right)}^2$$

Ответ: $$(-\infty;-2]\cup [\frac{2}{7}; +\infty )$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12167

Решите неравенство $$(3x-7)^{2}\geq (5x-9)^{2}$$

Ответ: [1;2]
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12936

Решите неравенство: $$(2x+1)(x-1)>9$$
Ответ: $$(-\infty;-2)\cup(2,5;+\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13025

Решите неравенство: $$(4x-7)^{2}\geq (7x-4)^{2}$$
Ответ: $$[-1;1]$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13047

Решите неравенство: $$(2x-5)^{2}\leq (5x-2)^{2}$$

Ответ: $$(-\infty;-1];[1;+\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13112

Решите неравенство: $$x^{2}(-x^{2}-81)\leq 81(-x^{2}-81)$$

Ответ: $$(-\infty;-9];[9;+\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13478

Решите неравенство: $$\frac{-18}{(x+4)^{2}-10}\geq 0$$

Ответ: $$(-4-\sqrt{10};-4+\sqrt{10})$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13501

Решите неравенство: $$\frac{-16}{(x+2)^{2}-5}\leq 0$$

Ответ: $$(-\infty;-2-\sqrt{5});(\sqrt{5}-2;+\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13523

Решите неравенство: $$\frac{-17}{x^{2}-2x-24}\leq 0$$
Ответ: $$(-\infty;-4);(6;+\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13713

Решите неравенство: $$(x-7)^{2}<\sqrt{11}(x-7)$$

Ответ: $$(7;7+\sqrt{11})$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13734

Решите неравенство $$(x-5)^{2}<\sqrt{7}(x-5)$$

Ответ: $$(5;5\sqrt{7})$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13757

Решите неравенство: $$(x-3)^{2}<\sqrt{5}(x-3)$$

Ответ: $$(3;3+\sqrt{5})$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 14065

Решите неравенств $$-\frac{12}{4+3x-x^{2}}\leq 0$$

Ответ: (-1;4)