ОГЭ
Задание 7138
На плоскости дан прямой угол. Окружность с центром внутри этого угла касается одной стороны угла, пересекает другую в точках А и В, а биссектрису угла – в точках С и D. Найдите радиус окружности, если $$AB=\sqrt{6}$$ см, $$CD=\sqrt{7}$$ см.
1) Пусть O – центр окружности,K-вершина, M-точка касания, $$OM\perp KM$$; $$OR\perp AB$$; x –радиус . $$RA=\frac{AB}{2}=\frac{\sqrt{6}}{2}$$; $$HC=\frac{DC}{2}=\frac{\sqrt{7}}{2}$$.
2) из $$\Delta ORA$$: $$OR=\sqrt{OA^{2}-RA^{2}}=\sqrt{x^{2}-\frac{3}{2}}$$
3) $$\Delta OHN \sim \Delta NMK$$ (прямоугольные, $$\angle ONH=\angle MNK$$)$$\Rightarrow$$ $$OH=HN=\frac{ON}{\sqrt{2}}=$$$$\frac{OM-NM}{\sqrt{2}}=\frac{x-NM}{\sqrt{2}}=$$$$\frac{x-MK}{\sqrt{2}}=\frac{x-OR}{\sqrt{2}}=$$$$\frac{x-\sqrt{x^{2}-\frac{3}{2}}}{\sqrt{2}}$$
4) из $$\Delta OHC$$: $$OC^{2}=OH^{2}+HC^{2}\Leftrightarrow$$ $$x^{2}=(\frac{x-\sqrt{x^{2}-\frac{3}{2}}}{2})^{2}+\frac{7}{4}\Leftrightarrow$$ $$x^{2} =\frac{1}{2} (x^{2}+x^{2}-\frac{3}{2}-2x\sqrt{x^{2}-\frac{3}{2}}) +\frac{7}{4} \Leftrightarrow$$ $$2x^{2}=2x^{2}-\frac{3}{2}+\frac{7}{2}-2x\sqrt{x^{2}-\frac{3}{2}}\Leftrightarrow$$ $$x\sqrt{x^{2}-\frac{3}{2}}=1\Leftrightarrow$$ $$x^{4}-\frac{3}{2}x^{2}-1=0\Leftrightarrow$$ $$\left[\begin{matrix}x^{2}=2 & & \\x^{2}=-\frac{1}{2} & &\end{matrix}\right.\Leftrightarrow$$ $$x=\sqrt{2}$$