Перейти к основному содержанию

ОГЭ

(C2) Текстовые задачи

Задачи на движение по воде

 
Аналоги к этому заданию:

Задание 13201

Рыболов в 5 часов утра на моторной лодке отправился от пристани против течения реки, через некоторое время бросил якорь, 2 часа ловил рыбу и вернулся обратно в 10 часов утра того же дня. На какое расстояние (в км) от пристани он отплыл, если скорость реки равна 2 км/ч, а собственная скорость лодки 6 км/ч?

Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 13180

Расстояние между пристанями А и В равно 60 км. Из А в В по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт В, тотчас повернула обратно и возвратилась в А. К этому времени плот проплыл 30 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч.

Ответ: 25 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 13158

Расстояние между пристанями А и В равно 45 км. Из А в В по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт В, тотчас повернула обратно и возвратилась в А. К этому времени плот проплыл 28 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 4 км/ч.

Ответ: 16 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 13005

Теплоход проходит по течению реки до пункта назначения 80 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 5 км/ч, стоянка длится 23 часа, а в пункт отправления теплоход возвращается через 35 часов после отплытия из него.

Ответ: 15 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 12984

Теплоход проходит по течению реки до пункта назначения 216 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 5 км/ч, стоянка длится 5 часов, а в пункт отправления теплоход возвращается через 23 часа после отплытия из него.

Ответ: 25 км/ч
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 11834

Баржа прошла по течению реки 88 км и, повернув обратно, прошла ещё 72 км, затратив на весь путь 10 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.

Ответ: 17
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 11812

Баржа прошла по течению реки 56 км и, повернув обратно, прошла ещё 54 км, затратив на весь путь 5 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.

Ответ: 23
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 11537

Расстояние между двумя пристанями по реке равно 24 км. Моторная лодка прошла от одной пристани до другой, сделала стоянку на 1 ч 40 мин и вернулась обратно. Всё путешествие заняло $$6\frac{2}{3}$$ ч. Найдите скорость (в км/ч) течения реки, если известно, что скорость моторной лодки в стоячей воде равна 10 км/ч.

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 11320

Моторная лодка прошла против течения реки 208 км и вернулась в пункт отправления, затратив на обратный путь на 5 часов меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч.

Ответ: 21
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 11299

Моторная лодка прошла против течения реки 132 км и вернулась в пункт отправления, затратив на обратный путь на 5 часов меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч.

Ответ: 17
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 10464

Расстояние между пристанями А и В равно 126 км. Из А в В по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт В, тотчас повернула обратно и возвратилась в А. К этому времени плот проплыл 36 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 4 км/ч.

Ответ: 32
Скрыть

Скорость плота соответствует скорости течения реки, следовательно, плот в движении был: $$\frac{36}{4}=9$$ часов. Лодка в движении была на час меньше, то есть 8 часов. Пусть x км/ч - собственная скорость лодки. Тогда скорость по течению x+4 км/ч, против течения: x-4 км/ч. Время движения по течению: $$\frac{126}{x+4}$$ часа, против: $$\frac{126}{x-4}$$, а в сумме дает 8 часов:

$$\frac{126}{x-4}+\frac{126}{x+4}=8|:2$$

$$\frac{63}{x-4}+\frac{63}{x+4}=4|\cdot (x-4)(x+4)$$

$$63x+63\cdot 4+63x+63\cdot 4=4x^{2}-64$$

$$4x^{2}-126x-64=0|:2$$

$$2x^{2}-63x-32=0$$

$$D=3969+4\cdot 2 \cdot 32=4225=65^{2}$$

$$x_{1}=\frac{63+65}{2\cdot 2}=32$$

$$x_{2}<0$$

 
Аналоги к этому заданию:

Задание 9922

Катер прошёл от одной станции к другой, расстояние между которыми по реке равно 48 км, сделал стоянку на 20 минут и вернулся обратно через $$5\frac{1}{3}$$ часа после начала поездки. Найдите скорость (в км/ч) течения реки, если известно, что скорость катера в стоячей воде равна 20 км/ч.

Ответ: 4
 
Аналоги к этому заданию:

Задание 8826

Моторная лодка прошла против течения реки 132 км и вернулась в пункт отправления, затратив на обратный путь на 5 часов меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч.

Ответ: 17 км/ч
Скрыть

Пусть скорость лодки х км/ч. Тогда скорость против течения будет х-5 км/ч. а по течению х+5 км/ч

По условию на обратный путь затрачено на 5 часов меньше, тогда: $$\frac{132}{x-5}-\frac{132}{x+5}=5$$

Приведем к общему знаменателю: $$\frac{132(x+5)-132(x-5)}{x^2-25}=5$$

$$\frac{132х+660-132х+660}{х^{2}-25}=5$$
$$\frac{1320}{x^{2}-25}=5$$
$$5(x^{2}-25)=1320$$
$$x^{2}=264+25=289$$ 
х=17 км/ч - искомая скорость лодки
Аналоги к этому заданию:

Задание 2381

От при­ста­ни А к при­ста­ни В, рас­сто­я­ние между ко­то­ры­ми равно 70 км, от­пра­вил­ся с по­сто­ян­ной ско­ро­стью пер­вый теп­ло­ход, а через 1 час после этого сле­дом за ним, со ско­ро­стью, на 8 км/ч боль­шей, от­пра­вил­ся вто­рой. Най­ди­те ско­рость пер­во­го теп­ло­хо­да, если в пункт В оба теп­ло­хо­да при­бы­ли од­но­вре­мен­но.

Ответ: 20
Скрыть

Пусть х км/ч - скорость первого, тогда х+8 км/ч - скорость второго. Время первого $$t_{1}=\frac{70}{x}$$ часов, время второго $$t_{2}=\frac{70}{x+8}$$ часов. При этом первый плыл на час дольше, тогда:

$$t_{1}-t_{2}=1\Leftrightarrow$$$$\frac{70}{x}-\frac{70}{x+8}=1|*(x^{2}+64)\Leftrightarrow$$$$70x+560-70x=x^{2}+8x\Leftrightarrow$$$$x^{2}+8x-560=0\Rightarrow$$
$$\left\{\begin{matrix}x_{1}+x_{2}=-8\\x_{1}*x_{2}=-560\end{matrix}\right.\Leftrightarrow $$$$\left[\begin{matrix}x_{1}=-28\\x_{2}=20\end{matrix}\right.$$

Скорость не может быть отрицательной, следовательно, она составляла 20 км/ч

Аналоги к этому заданию:

Задание 2380

Баржа про­шла по те­че­нию реки 40 км и, по­вер­нув об­рат­но, про­шла ещё 30 км, за­тра­тив на весь путь 5 часов. Най­ди­те соб­ствен­ную ско­рость баржи, если ско­рость те­че­ния реки равна 5 км/ч.

Ответ: 15
Скрыть

Пусть х км/ч - собственная скорость баржи, тогда время движения по течению $$t_{1}=\frac{40}{x+5}$$ часов, время движения против течения $$t_{2}=\frac{30}{x-5}$$. Тогда:
$$\frac{40}{x+5}+\frac{30}{x-5}=5|*\frac{x^{2}-25}{5}\Leftrightarrow$$$$8(x-5)+6(x+5)=x^{2}-25\Leftrightarrow$$$$x^{2}-14x-15=0\Leftrightarrow$$$$\left\{\begin{matrix}x_{1}+x_{2}=14\\x_{1}*x_{2}=-15\end{matrix}\right.\Leftrightarrow $$$$\left[\begin{matrix}x_{1}=15\\x_{2}=-1 \end{matrix}\right.$$
Скорость не может быть отрицательной, следовательно, она составляет 15 км/ч

Аналоги к этому заданию:

Задание 2379

Теп­ло­ход про­хо­дит по те­че­нию реки до пунк­та на­зна­че­ния 165 км и после сто­ян­ки воз­вра­ща­ет­ся в пункт от­прав­ле­ния. Най­ди­те ско­рость теп­ло­хо­да в не­по­движ­ной воде, если ско­рость те­че­ния равна 4 км/ч, сто­ян­ка длит­ся 5 часов, а в пункт от­прав­ле­ния теп­ло­ход воз­вра­ща­ет­ся через 18 часов после от­плы­тия из него.

Ответ: 26
Скрыть

Пусть х км/ч - скорость теплохода в стоячей воде. Тогда время по течению: $$t_{1}=\frac{165}{x+4}$$ часов, время против течения $$t_{2}=\frac{165}{x-4}$$ часов. Время движения найдем как разницу общего времени и стоянки: $$18-5=13$$ часов. Тогда:

$$\frac{165}{x+4}+\frac{165}{x-4}=13|*(x^{2}-16)\Leftrightarrow$$$$13x^{2}-330x-208=0\Rightarrow$$$$D=108900+10816=346^{2}\Rightarrow$$$$x_{1}=\frac{330+346}{26}=26, x_{2}<0$$. Тогда собственная скорость теплохода составляет 26 км/ч

Аналоги к этому заданию:

Задание 2378

Мо­тор­ная лодка про­шла от одной при­ста­ни до дру­гой, рас­сто­я­ние между ко­то­ры­ми по реке равно 16 км, сде­ла­ла сто­ян­ку на 40 мин и вер­ну­лась об­рат­но через $$3\frac{2}{3}$$ ч после на­ча­ла по­езд­ки. Най­ди­те ско­рость те­че­ния реки, если из­вест­но, что ско­рость мо­тор­ной лодки в сто­я­чей воде равна 12 км/ч.

Ответ: 4 км/ч.
Скрыть

Пусть х км/ч - скорость течения, тогда время по течению $$t_{1}=\frac{16}{12+x}$$ часов, время против течения $$t_{2}=\frac{16}{12-x}$$ часов. Время движения в пути вычислим как разницу общего и стоянки: $$3\frac{2}{3}-\frac{2}{3}=3$$ часа. Следовательно:
$$\frac{16}{12+x}+\frac{16}{12-x}=3|*144-x^{2}\Leftrightarrow$$$$16*12-16x+16*12+16x=3(144-x^{2})|:3\Leftrightarrow$$$$128=144-x^{2}\Leftrightarrow$$$$x=\pm 4$$, скорость не может быть отрицательной, следовательно, скорость течения составляет 4 км/ч.

Аналоги к этому заданию:

Задание 2377

Катер прошёл от одной при­ста­ни до дру­гой, рас­сто­я­ние между ко­то­ры­ми по реке равно 48 км, сде­лал сто­ян­ку на 20 мин и вер­нул­ся об­рат­но через $$5\frac{1}{3}$$ ч после на­ча­ла по­езд­ки. Най­ди­те ско­рость те­че­ния реки, если из­вест­но, что ско­рость ка­те­ра в сто­я­чей воде равна 20 км/ч.

Ответ: 4 км/ч.
Скрыть

Пусть х км/ч - скорость течения реки, тогда время по течению $$t_{1}=\frac{48}{20+x}$$ часов, время против течения $$t_{2}=\frac{48}{20-x}$$ часов. Время движения за вычетом времени стоянки составляет: $$5\frac{1}{3}-\frac{1}{3}=5$$ часов. Следовательно:
$$\frac{48}{20+x}+\frac{48}{20-x}=5|*(20-x)(20+x)\Leftrightarrow$$$$48*20-48x+48*20+48x=5(400-x^{2})\Leftrightarrow$$$$384=400-x^{2}\Leftrightarrow$$$$x^{2}=16\Leftrightarrow$$$$x=\pm 4$$, но скорость отрицательной быть не может, следовательно, скорость течения составляет 4 км/ч.

Аналоги к этому заданию:

Задание 2375

Ту­ри­сты про­плы­ли на лодке от ла­ге­ря не­ко­то­рое рас­сто­я­ние вверх по те­че­нию реки, затем при­ча­ли­ли к бе­ре­гу и, по­гу­ляв 2 часа, вер­ну­лись об­рат­но через 6 часов от на­ча­ла пу­те­ше­ствия. На какое рас­сто­я­ние от ла­ге­ря они от­плы­ли, если ско­рость те­че­ния реки равна 3 км/ч, а соб­ствен­ная ско­рость лодки 6 км/ч?

Ответ: 9 км.
Скрыть

Пусть S км - расстояние от лагеря до берега, тогда время по течению: $$t_{1}=\frac{S}{6+3}$$ часов, время против течения: $$t_{2}=\frac{S}{6-3}$$ часов. При этом время в пути составляет: $$6-2=4$$ часа, тогда:
$$\frac{S}{9}+\frac{S}{3}=4|*9\Leftrightarrow$$$$S+3S=36\Leftrightarrow$$$$4S=36|:4\Leftrightarrow$$$$S=9$$ км

Аналоги к этому заданию:

Задание 2374

Ры­бо­лов в 5 часов утра на мо­тор­ной лодке от­пра­вил­ся от при­ста­ни про­тив те­че­ния реки, через не­ко­то­рое время бро­сил якорь, 2 часа ловил рыбу и вер­нул­ся об­рат­но в 10 часов утра того же дня. На какое рас­сто­я­ние от при­ста­ни он от­да­лил­ся, если ско­рость реки равна 2 км/ч, а соб­ствен­ная ско­рость лодки 6 км/ч?

Ответ: 8 км.
Скрыть

Пусть S км - расстояние в одну сторону, тогда время по течению: $$t_{1}=\frac{S}{6+2}$$ ; время против течения: $$t_{2}=\frac{S}{6-2}$$. Общее время движения составляет: $$10-5-2=3$$ часа. Тогда:
$$\frac{S}{8}+\frac{S}{4}=6\Leftrightarrow$$$$\frac{3S}{8}=3|*\frac{8}{3}\Leftrightarrow$$$$S=8$$ км.

Аналоги к этому заданию:

Задание 2373

При­ста­ни А и В рас­по­ло­же­ны на реке, ско­рость те­че­ния ко­то­рой на этом участ­ке равна 3 км/ч. Лодка про­хо­дит туда и об­рат­но без оста­но­вок со сред­ней ско­ро­стью 8 км/ч. Най­ди­те соб­ствен­ную ско­рость лодки.

Ответ: 9 км/ч.
Скрыть

Пусть х км/ч - собственная скорость лодки, S км - расстояние от А до В, тогда:
время по течению: $$t_{1}=\frac{S}{x+3}$$
время против течения: $$t_{2}=\frac{S}{x-3}$$
Средняя скорость в таком случае составляет: $$\frac{2S}{\frac{S}{x+3}+\frac{S}{x-3}}=8\Leftrightarrow$$$$\frac{2S}{\frac{Sx-3S+Sx+3S}{x^{2}-9}}=8\Leftrightarrow$$$$\frac{2S(x^{2}-9)}{2Sx}=8\Leftrightarrow$$$$x^{2}-9=8x\Leftrightarrow$$$$x^{2}-8x-9=0\Leftrightarrow$$$$\left[\begin{matrix}x_{1}+x_{2}=8\\x_{1}*x_{2}=-9 \end{matrix}\right.\Leftrightarrow \left[\begin{matrix}x_{1}=9\\x_{2}=-1 \end{matrix}\right.$$
Скорость лодки не может быть отрицательной, потому она составит 9 км/ч

Аналоги к этому заданию:

Задание 2372

Мо­тор­ная лодка про­шла 36 км по те­че­нию реки и вер­ну­лась об­рат­но, по­тра­тив на весь путь 5 часов. Ско­рость те­че­ния реки равна 3 км/ч. Най­ди­те ско­рость лодки в не­по­движ­ной воде.

Ответ: 15 км/ч.
Скрыть

Пусть х км/ч - собственная скорость лодки, тогда х+3 км/ч - скорость лодки по течению и $$t_{1}=\frac{36}{x+3}$$ часов - время лодки по течению; х-3 км/ч - скорость лодки против течения и $$t_{2}=\frac{36}{x-3}$$ часов - время против течения. Суммарное время движения составляет 5 часов, то есть: $$t_{1}+t_{2}=5$$, получаем:

$$\frac{36}{x+3}+\frac{36}{x-3}=5|*(x-3)(x+3)\Leftrightarrow$$$$36x-108+36x+108=5x^{2}-45\Leftrightarrow$$$$5x^{2}-72x-45=0\Rightarrow$$$$D=5184+900=6084=78^{2}\Rightarrow$$$$x_{1}=\frac{72+78}{10}=15, x_{2}<0$$, то есть собственная скорость лодки составляла 15 км/ч

Аналоги к этому заданию:

Задание 2371

Рас­сто­я­ние между при­ста­ня­ми А и В равно 80 км. Из А в В по те­че­нию реки от­пра­вил­ся плот, а через 2 часа вслед за ним от­пра­ви­лась яхта, ко­то­рая, при­быв в пункт В, тот­час по­вер­ну­ла об­рат­но и воз­вра­ти­лась в А. К этому вре­ме­ни плот про­шел 22 км. Най­ди­те ско­рость яхты в не­по­движ­ной воде, если ско­рость те­че­ния реки равна 2 км/ч. Ответ дайте в км/ч.

Ответ: 18 км/ч.
Скрыть

Пусть х км/ч - собственная скорость яхты, плот двигается со скоростью течения, тогда время плота $$t_{1}=\frac{22}{2}=11$$ часов. Лодка плыла на 2 часа меньше, то есть $$11-2=9$$ часов, при этом данное время складывается из времени по течению: $$t_{2}=\frac{80}{x+2}$$ и времени движения против течения $$t_{3}=\frac{80}{x-2}$$.

Получаем: $$\frac{80}{x+2}+\frac{80}{x-2}=9|*(x+2)(x-2)\Leftrightarrow$$$$80x-160+80x+160=9x^{2}-36\Leftrightarrow$$$$9x^{2}-160x-36=0\Rightarrow$$$$D=25600+1296=164^{2}\Rightarrow$$$$x_{1}=\frac{160+164}{18}=18 , x_{2}<0$$, то есть собственная скорость лодки 18 км/ч

Аналоги к этому заданию:

Задание 2370

Из пунк­та А в пункт В, рас­по­ло­жен­ный ниже по те­че­нию реки, от­пра­вил­ся плот. Од­но­вре­мен­но нав­стре­чу ему из пунк­та В вышел катер. Встре­тив плот, катер сразу по­вер­нул и по­плыл назад. Какую часть пути от А до В прой­дет плот к мо­мен­ту воз­вра­ще­ния ка­те­ра в пункт В, если ско­рость ка­те­ра в сто­я­чей воде вчет­ве­ро боль­ше ско­ро­сти те­че­ния реки?

Ответ: плот пройдет $$\frac{2}{5}$$ всего пути.
Скрыть

Пусть расстояние от А до В равно 1, х частей расстояния/час - скорость течения (она же и скорость плота), тогда 4х - собственная скорость катера. Получаем, что из В в А катер плыл против течения со скоростью 4х-х=3х, из А в В по течению со скоростью 4х+х=5х. Для нахождения времени встречи объектов, двигавшихся навстречу, скорости складываются, то есть: $$t_{1}=\frac{1}{x+3x}=\frac{1}{4x}$$, тогда расстояние из А до места встречи: $$S_{1}=x*\frac{1}{4x}=\frac{1}{4}$$. Тогда расстояние от В до места встречи: $$S_{2}=1-S_{1}=\frac{3}{4}$$. Тогда, время, за которое катер вернется обратно в В: $$t_{2}=\frac{\frac{3}{4}}{5x}=\frac{3}{20x}$$, тогда расстояние, которое за это время пройдет плот: $$S_{3}=x*\frac{3}{20x}=\frac{3}{20}$$. Тогда общее расстояние, пройденное плотом, $$S_{1}+S_{3}=\frac{1}{4}+\frac{3}{20}=\frac{2}{5}$$, то есть плот пройдет $$\frac{2}{5}$$ всего пути за все время