Перейти к основному содержанию

ОГЭ

ОГЭ / (C6) Геометрическая задача повышенной сложности

Задание 2672

Через середину M стороны BC параллелограмма ABCD, площадь которого равна 1, и вершину A проведена прямая, пересекающая диагональ BD в точке O. Найдите площадь четырёхугольника OMCD.

Ответ: $$\frac{5}{12}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$\bigtriangleup BOM\sim \bigtriangleup AOD$$; $$\frac{BM}{AD}=\frac{1}{2}$$ $$\Rightarrow$$ $$\frac{S_{BOM}}{S_{AOD}}=\frac{1}{4}$$

2) Пусть $$S_{BOM}=S_{1}$$; $$S_{AOD}=S_{2}$$; $$S_{ABO}=S_{3}$$ $$\Rightarrow S_{AOD}=4S_{BOM}=4S_{2}$$; $$S_{ABD}=\frac{1}{2}S_{ABCD}=\frac{1}{2}$$; $$S_{ABM}=\frac{1}{2}\cdot AH\cdot BM=\frac{1}{2}\cdot \frac{1}{2}\cdot BC\cdot BM=\frac{1}{4}S_{ABCD}=\frac{1}{4}$$

3) $$\left\{\begin{matrix}S_{1}+S_{3}=\frac{1}{4}\\S_{3}+S_{2}=\frac{1}{2}\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}S_{1}+S_{3}=\frac{1}{4}\\S_{3}+4S_{1}=\frac{1}{2}\end{matrix}\right.$$ (вычтем из второго первое) $$3S_{1}=\frac{1}{4}\Rightarrow S_{1}=\frac{1}{12}$$ $$S_{2}=4\frac{1}{12}=\frac{1}{3}$$ $$\Rightarrow$$ $$S_{3}=\frac{1}{4}-S_{1}=\frac{1}{4}-\frac{1}{12}=\frac{1}{6}$$ $$S_{1}+S_{2}+S_{3}=\frac{1}{12}+\frac{1}{3}+\frac{1}{6}=\frac{1+4+2}{12}=\frac{7}{12}=S_{ABMD}$$ $$S_{MOCD}=1-S_{ABMD}=1-\frac{7}{12}=\frac{5}{12}$$

Задание 2776

На боковой стороне трапеции выбрана точка, делящая эту сторону в отношении 3:1, считая от вершины меньшего основания. Прямая, проходящая через эту точку параллельно основаниям, делит площадь трапеции в отношении 2:1, считая о меньшего основания. В каком отношении делит площадь трапеции её средняя линия?

Ответ: $$\frac{7}{11}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\frac{S_{BMLC}}{S_{AMLD}}=\frac{2}{1}$$

1) Пусть $$BC=x$$; $$AD=y$$; $$BZ=h$$ $$\Rightarrow$$ $$BR=\frac{3h}{4}$$; $$RZ=\frac{h}{4}$$; $$AZ+ND=y-x$$ $$\Rightarrow$$ $$MR+IL=\frac{3}{4}(y-x)$$ $$\Rightarrow$$ $$ML=x+\frac{3}{4}(y-x)=\frac{x+3y}{4}$$

2) $$\left.\begin{matrix}S_{BMLC}=\frac{x+\frac{x+3y}{4}}{2}\cdot \frac{3h}{4}=\frac{(5x+3y)\cdot 3h}{32}\\S_{AMLD}=\frac{\frac{x+3y}{4}+y}{2}\cdot \frac{h}{4}=\frac{(x+7y)\cdot h}{32}\end{matrix}\right\}$$ $$\Rightarrow$$ $$\frac{S_{BMLC}}{S_{AMLD}}=\frac{15x+9y}{x+7y}=\frac{2}{1}$$ $$\Rightarrow$$ $$15x+9y=2x+14y$$ $$\Rightarrow$$ $$y=\frac{13x}{5}=2,6x$$

3) $$\left.\begin{matrix}S_{BCKH}=\frac{x+\frac{x+y}{2}}{2}\cdot \frac{h}{2}=\frac{(3x+y)\cdot h}{8}\\S_{MCDA}=\frac{\frac{x+y}{2}+y}{2}\cdot \frac{h}{2}=\frac{(x+3y)\cdot h}{8}\end{matrix}\right\}$$ $$\Rightarrow$$ $$\frac{S_{BCKH}}{S_{MCDA}}=\frac{3x+y}{x+3y}=\frac{3x+2,6x}{x+7,8x}=\frac{5,6x}{8,8x}=\frac{7}{11}$$

 

 

Задание 2930

В трапеции АВСD на продолжении основания ВС взята точка М таким образом, что прямая АМ отсекает от трапеции АВСD треугольник, площадь которого в 4 раза меньше площади трапеции АВСD. Найдите длину отрезка СМ, если АD=8, ВС=4.

Ответ: 40/3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Решение временно отсутствует, можете найти его в моем видео-разборе ( вначале варианта )

Задание 3020

В треугольнике АВС из вершин А и В проведены отрезки АК и ВЕ, причем точки К и Е лежат на сторонах ВС и АС соответственно. Отрезки АК и ВЕ пересекаются в точке М так, что АМ : МК = 5, ВМ : МЕ = 2. Найдите отношения АЕ : ЕС и ВК : КС.

Ответ: 1,5;3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 3144

Точки D и Е расположены на стороне АС треугольника АВС. Прямые ВD и ВЕ разбивают медиану АМ треугольника АВС на три равных отрезка. Найдите площадь треугольника BDE, если площадь треугольника ABC равна 1.

Ответ: 0,3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Текстовое решение временно недоступно, вы можете найти его в видео в начале варианта

Задание 2973

Прямая пересекает стороны АВ и АС треугольника АВС в точках Р и М соответственно. Найдите отношение площади треугольника АМР к площади четырехугольника МСВР, если АР : РВ = 5 : 4, АМ : МС = 3 : 5.

Ответ: $$\frac{5}{19}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$S_{ABC}=\frac{1}{2}AB\cdot AC\cdot \sin A=\frac{1}{2}9x\cdot 8y\cdot \sin \alpha =36xy\sin \alpha$$ 2) $$S_{APM}=\frac{1}{2}AP\cdot AM\cdot \sin A=\frac{1}{2}5x\cdot 3y\cdot \sin \alpha =7,5xy\sin \alpha$$ 3) $$S_{PBCM}=S_{ABC}-S_{APM}=36xy\sin \alpha-7,5xy\sin \alpha=28,5xy\sin \alpha$$ 4) $$\frac{S_{AMP}}{S_{MCBP}}=\frac{7,5xy\sin \alpha}{28,5xy\sin \alpha}=\frac{75}{285}=\frac{15}{57}=\frac{5}{19}$$

Задание 3315

В равностороннем треугольнике ABC точка М делит основание АС на отрезки 5 и 3. В треугольники АВМ и СВМ вписаны окружности. Найдите площадь фигуры, вершинами которой являются центры окружностей и точки их касания со стороной ВМ.

Ответ: $$\frac{5\sqrt{3}}{6}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 3362

Окружность с центром на стороне AC равнобедренного треугольника ABC (AB=BC) касается сторон AB и BC, а сторону AC делит на три равные части. Найти радиус окружности, если площадь треугольника ABC равна $$9\sqrt{2}$$

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 3410

В выпуклом равностороннем шестиугольнике ABCDЕF углы при вершинах А, С и Е – прямые. Найдите площадь шестиугольника, если его сторона равна $$3\sqrt{3-\sqrt{3}}$$

Ответ: 27
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 3569

В равностороннем треугольнике АВС высота равна $$\sqrt{3}$$. На стороне АВ взята точка М, такая, что АМ:МВ = 1:3. На стороне ВС взята точка N, такая, что ВN:NС = 3:5.Найдите площадь четырехугольника АМNС.

Ответ: $$\frac{23\sqrt{3}}{32}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) из $$\bigtriangleup AHB$$: $$\sin A=\frac{BH}{AB}$$ $$\Rightarrow$$

$$AB=\frac{BH}{\sin A}=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}=2$$

2) $$MB=\frac{3}{4}AB$$; $$BN=\frac{3}{8}BC$$ $$\Rightarrow$$

$$S_{BMN}=\frac{1}{2}\cdot\frac{3}{4}AB\cdot\frac{3}{8}BC\cdot\sin B=\frac{9}{32}\cdot\frac{1}{2}AB\cdot BC\cdot\sin B=\frac{9}{32}S_{ABC}$$

3) $$S_{ABC}=\frac{1}{2}\cdot AB\cdot BC\cdot\sin B=\frac{1}{2}\cdot2\cdot2\cdot\frac{\sqrt{3}}{2}=\sqrt{3}$$ $$\Rightarrow$$

$$S_{AMNC}=S_{ABC}-S_{BMN}=\frac{23}{32}S_{ABC}=\frac{23}{32}\cdot\sqrt{3}$$

Задание 3846

В трапеции ABCD основания AD и ВС равны 6см и 10см соответственно. На продолжении ВС выбрана такая точка М, что прямая АМ отсекает от площади трапеции 1/4 её часть. Найдите длину отрезка СМ.

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Пусть $$AH=h$$ - высота

$$S_{ABCD}=\frac{BC+AD}{2}\cdot AH=\frac{6+10}{2}\cdot h=h$$

тогда $$S_{AKD}=\frac{1}{2}AD\cdot x$$, х - высота

$$S_{AKD}=KM$$

$$S_{AKD}=\frac{1}{2}\cdot6\cdot x=3x=\frac{1}{4}S_{ABCD}=2h$$

$$x=\frac{2h}{3}$$

2) $$LK+KM=h$$ $$\Rightarrow$$ $$LK=\frac{h}{3}$$ - высота $$\bigtriangleup CMK$$

3) $$\bigtriangleup AKD\sim\bigtriangleup CMK$$ по трем углам $$\Rightarrow$$

$$\frac{AD}{CM}=\frac{KM}{KL}=\frac{2h}{3}\div\frac{h}{3}=\frac{2}{1}$$ 

$$CM=\frac{1}{2}AD=\frac{1}{2}\cdot6=3$$

Задание 3997

Продолжение сторон KN и LM выпуклого четырехугольника KLMN пересекаются в точке P, а продолжения сторон KL и LM – в точке Q. Отрезок PQ перпендикулярен биссектрисе угла KQN. Найти длину стороны KL, если KQ=12, NQ=8, а площадь четырехугольника KLMN равна площади треугольника LQM.

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Постороим через К прямую $$m\parallel QP$$

Пусть $$ON\cap m=A$$; $$QB\cap m=B$$ (QB - биссектриса);

$$QL\cap m=K$$; $$PL\cap m=C$$

2) $$\bigtriangleup KAN\sim\bigtriangleup QNP$$; $$QA=QK=12$$ $$\Rightarrow$$

$$AN=AQ-QN=12-8=4$$; $$\frac{AN}{QN}=\frac{AK}{QP}=\frac{4}{8}=\frac{1}{2}$$

3) Пусть $$QK=xQL$$ $$\Rightarrow$$

$$KL=QK-QL=(x-1)QL$$

$$\bigtriangleup CKL\sim\bigtriangleup QLP$$ $$\Rightarrow$$

$$\frac{CK}{QP}=\frac{KL}{LQ}=\frac{(x-1)LQ}{LQ}$$ $$\Rightarrow$$

$$CK=QP(x-1)$$

4) Пусть $$AQ=yQM$$ $$\Rightarrow$$

$$AM=AQ-QM=yQM-QM=QM(y-1)$$

$$\bigtriangleup CAM\sim\bigtriangleup QMP$$ $$\Rightarrow$$

$$\frac{AC}{PQ}=\frac{AM}{MQ}=\frac{QM(y-1)}{QM}$$ $$\Rightarrow$$

$$AC=PQ(y-1)$$

$$AK=\frac{1}{2}PQ$$

$$AK=AC-CK$$ $$\Rightarrow$$

$$\frac{1}{2}PQ=(y-1)PQ-(x-1)PQ$$ $$\Leftrightarrow$$

$$\frac{1}{2}=y-1-x+1$$ $$\Leftrightarrow$$

$$\frac{1}{2}=y-x$$

5) $$S_{\bigtriangleup LQM}=S=\frac{1}{2}QL\cdot QM\cdot\sin Q=\frac{1}{2}\frac{QK}{x}\cdot\frac{AQ}{y}\sin Q$$

$$S_{\bigtriangleup QKN}=2S=\frac{1}{2}QK\cdot QN\cdot\sin Q$$

$$\frac{1}{2}QK\cdot QN\cdot\sin Q=2\cdot\frac{1}{2}\frac{QK}{x}\cdot\frac{AQ}{y}\sin Q$$

$$12\cdot8=2\cdot\frac{12}{x}\cdot\frac{12}{y}\Leftrightarrow$$

$$8=\frac{24}{xy}$$ $$\Leftrightarrow$$

$$xy=3$$

$$\left\{\begin{matrix}y=x+\frac{1}{2}\\xy=3\end{matrix}\right.$$

$$x(x+\frac{1}{2})=3$$

$$x^{2}+\frac{x}{2}-3=0$$

$$2x^{2}+x-6=0$$

$$D=1+48=49$$

$$x_{1}=\frac{-1+7}{4}=\frac{3}{2}$$

$$x_{2}<0$$

6) $$\Rightarrow$$: $$QL=\frac{QK}{\frac{3}{2}}=\frac{12\cdot2}{3}=8$$ $$\Rightarrow$$

$$KL=QK-QL=12-8=4$$

Задание 4061

В прямоугольном треугольнике АВС с гипотенузой АВ, равной 10, на высоте СD как на диаметре построена окружность. Касательные к этой окружности, проходящие через точки А и В, пересекаются при продолжении в точке К. чему равны касательные к окружности, выходящие из точки К?

Ответ: $$\frac{10}{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Пусть $$HB=x\Rightarrow AH=10-x$$

по свойству касательных $$MB=HB=x$$

$$AH=AN=10-x$$; пусть $$OH=OC=r$$;

$$KN=KM=z$$

2) По свойству высоты прямоугольного треугольинка:

$$CH=\sqrt{AH\cdot HB}\Leftrightarrow(2r)^{2}=x(10-x)$$

$$\Leftrightarrow r^{2}=\frac{x(10-x)}{4}$$

3) $$S_{AKB}=p\cdot r$$, где

$$p=\frac{AK+KB+AB}{2}$$ 

$$S=\sqrt{p(p-AK)(P-KB)(p-AB)}$$

$$p=\frac{10+10-x+x+2z}{2}=10+z$$

$$S=\sqrt{(10+z)(10+z-10+x-x)(10+z-x-z)(10+z-10}=$$

$$=\sqrt{(10+z)\cdot x\cdot(10-x)\cdot z}$$

Тогда:

$$r=\frac{S}{p}=\frac{xz(10+z)(10-x)}{10+z}=\sqrt{\frac{xz(10-x)}{10+z}}$$

4) 2 из 3:

$$\sqrt{\frac{x(10-x)}{4}}=\sqrt{\frac{xz(10-x)}{10+z}}$$

$$\frac{1}{4}=\frac{z}{10+z}$$

$$10+z=4z\Leftrightarrow z=\frac{10}{3}$$

Задание 4331

Через центр О вписанной в треугольник АВС полуокружности проведена прямая, параллельная стороне ВС и пересекающая стороны АВ и АС соответственно в точках М и N. Периметр треугольника АМN равен 3, ВС = 1, а отрезок АО в 3 раза больше радиуса вписанной в треугольник АВС окружности. Найдите площадь треугольника АВС.

Ответ: $$\frac{1}{\sqrt{2}}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$S_{ABC}=p\cdot r=\frac{AB+BC+AC}{2}\cdot r$$; $$P_{AMN}=AM+MN+AN$$; BO - биссетриса $$\Rightarrow$$ $$MO\parallel BO$$ $$\Rightarrow$$ $$\angle MOB=\angle OBH=\angle OBM$$ $$\Rightarrow$$ $$\bigtriangleup MBO$$ - равнобедренный $$\Rightarrow$$ $$MB=MO$$. Аналогично: $$ON=NC$$ $$\Rightarrow$$ $$MN=MO+ON=MN+NC$$; $$AB=AM+MB$$; $$AC=AN+NC$$; $$P_{AMN}=AM+AN+NO+OM=AM+AN+NC+MB=AB+AC=3$$

Из $$\bigtriangleup AOP$$: $$AP=\sqrt{AO^{2}-OP^{2}}=\sqrt{(3r)^{2}-r^{2}}=\sqrt{8}r$$; $$S_{ABC}=\frac{AB+BC+AC}{2}\cdot r=\frac{3+1}{2}\cdot r=2r$$; $$AP=\frac{AB+AC-BC}{2}=\frac{3-1}{2}=1$$ $$\Rightarrow$$ $$AP=1=\sqrt{8}r$$ $$\Rightarrow$$ $$r=\frac{1}{\sqrt{8}}$$; $$S_{ABC}=2\cdot\frac{1}{\sqrt{8}}=\frac{1}{\sqrt{2}}$$

Задание 4537

Четырёхугольник ABCD вписан в окружность, его диагонали АС и BD пересекаются в точке F, причем AF : FС = 3 : 1, ВF : FD = 4 : 3, $$\cos\angle ADB=0,25$$. Найдите радиус окружности, описанной около треугольника ВАС, если АС = 4

Ответ: $$\frac{8\sqrt{15}}{15}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$AF\div FC=3\div1$$; $$AC=4$$ $$\Rightarrow$$ $$AF=3$$; $$FC=1$$

2) $$\angle CAD=\angle CBF$$; $$\angle BCA=\angle BDA$$ (опираются на одни дуги); $$\Rightarrow$$ $$\bigtriangleup BFC\sim\bigtriangleup AFD$$: пусть $$BF=4x$$; $$FD=3x$$, тогда $$k=\frac{BF}{AF}=\frac{CF}{FD}$$ $$\Rightarrow$$ $$\frac{4x}{3}=\frac{1}{3x}$$ $$\Rightarrow$$ $$4x^{2}=1$$ $$\Rightarrow$$ $$x=\frac{1}{2}$$ $$\Rightarrow$$ $$BF=2$$; $$FD=1,5$$

3) $$\frac{BC}{AD}=k=\frac{2}{3}$$ $$\Rightarrow$$ пусть $$BC=a$$ $$\Rightarrow$$ $$AD=1,5a$$. По теореме косинусов для $$\bigtriangleup ABC$$ и $$\bigtriangleup ABD$$: $$\left\{\begin{matrix}AB^{2}=BC^{2}+AC^{2}-2BC\cdot AC\cdot\cos\angle BCA\\AB^{2}=BD^{2}+AD^{2}-2BD\cdot AD\cdot\cos\angle BDA\end{matrix}\right.$$ Приравниваем их: $$a^{2}+16-2\cdot4\cdot a\cdot\frac{1}{4}=2,25a^{2}+12,25-2\cdot\frac{2}{3}a\cdot3,5\cdot\frac{1}{4}$$; $$1,25a^{2}+3,75a-0,625a=0$$; $$2a^{2}-a+6=0$$; $$a=2$$ $$\Rightarrow$$ $$b=\sqrt{4+16-2\cdot2\cdot4\cdot\frac{1}{4}}=4=AB$$

4) Из $$\bigtriangleup ABC$$: $$\frac{AB}{2\sin\angle BCA}=R$$, где R - радиус описанной окружности; $$\sin\angle BCA=\sqrt{1-\cos^{2}\angle BCA}=\sqrt{1-\frac{1}{16}}=\frac{\sqrt{15}}{4}$$; $$R=\frac{4}{2\cdot\frac{\sqrt{15}}{4}}=\frac{8}{\sqrt{15}}=\frac{8\sqrt{15}}{15}$$

Задание 4654

В прямоугольном треугольнике АВС точки D и E лежат соответственно на катетах BC и AC так, что CD = CE = 1. Точка M - точка пересечения отрезков AD и BE Площадь треугольника BMD больше площади треугольника AME на 1/2. Известно, что AD = $$\sqrt{10}$$ . Найдите длину гипотенузы AB.

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Построим чертеж:

1)CE = 1, пусть AE = x. Тогда из треугольника ACD по теореме Пифагора:
$$AC^{2}+CD^{2}=AD^{2}\Leftrightarrow $$$$(1+x)^{2}+1=10\Leftrightarrow $$$$(1+x)^{2}=9\Leftrightarrow $$$$1+x=3$$
То есть AC=3.
2)$$S_{BMD}-S_{AEM}=\frac{1}{2}$$ Если мы добавим и вычтем $$S_{EMDC}$$ то получим следующее:
$$S_{BMD}+S_{EMDC}-S_{AEM}-S_{EMDC}=\frac{1}{2}$$
$$S_{BEC}-S_{ACD}=\frac{1}{2}$$
3) Пусть BD = y, тогда:
$$S_{BEC}=\frac{1}{2}*1*(1+y)=\frac{1+y}{2}$$
$$S_{ACD}=\frac{1}{2}*1*3=\frac{3}{2}$$
C учетом пункта 2:
$$\frac{1+y}{2}-\frac{3}{2}=\frac{1}{2}\Leftrightarrow $$$$(1+y)-3=1\Leftrightarrow $$$$1+y=4$$
То есть CB=4
4)По теореме Пифагора из треугольника ABC:
$$AB=\sqrt{AC^{2}+CB^{2}}=5$$

Задание 4804

В треугольнике, величина одного из углов которого равна разности величин двух других его углов, длина меньшей стороны равна 1, а сумма площадь квадратов, построенных на двух других сторонах, в два раза больше площади описанного около треугольника круга. Найдите длину большей стороны треугольника.

Ответ: $$x=\sqrt{\frac{2}{4-\pi}}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Построим рисунок:

1) Пусть меньший угол $$\alpha$$, а жва других $$x$$ и $$y$$. По условию задания меньший равен равности двух сотавшихся, а по свойству треугольника разность 180 и меньшего дает сумму оставшихся. Тогда:

$$\left\{\begin{matrix} \alpha= x-y\\180-\alpha =x+y \end{matrix}\right.$$

Сложим оба уравнения системы:

$$\Rightarrow 180=2x \Leftrightarrow x=90$$

То есть мы получили прямоугольный треугольник. Построим новый чертеж по условию задачи и с учетом полученного решения:

2) Пусть $$AC = x ; S_{AEDC}=S_{1}; S_{BCIH}=S_{2}$$. Тогда $$S_{1}=x^{2} ;$$$$ BC=\sqrt{x^{2}-1} \Rightarrow S_{2}=x^{2}-1 \Rightarrow $$$$S_{1}+S_{2}=2x^{2}-1$$

3)Пусть площадь окружности $$S_{3} ; R$$-радиус окружности.Радиус описанной окружотсти вокруг прямоугольного треугольника равен полвине его гипотенузы. $$R=\frac{AC}{2}=\frac{x}{2}$$. Тогда : $$S_{3}=\pi R^{2}=\pi \frac{x^{2}}{4}$$. Приравняем площади: $$2x^{2}-1=2*\pi \frac{x^{2}}{4} \Rightarrow $$$$4x^{2}-2=\pi x^{2} \Rightarrow $$$$x^{2}(4-\pi)=2 \Rightarrow $$$$x=\sqrt{\frac{2}{4-\pi}}$$

Задание 4872

В равностороннем треугольнике АВС из вершин А и В проведена окружность с центром в точке О, проходящая через точку пересечения медиан треугольника АВС и касающаяся его стороны ВС в её середине D. Из точки А проведена прямая, касающаяся этой окружности в точке Е так, что градусная мера угла ВАЕ меньше $$30^{\circ}$$. Найдите отношение площадей треугольника АВЕ и четырехугольника ВЕОD

Ответ: $$\frac{6(13-5\sqrt{2})}{17}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
Пусть сторона треугольника равна а: тогда по т.Пифагора из треугольника ADC: $$AD=\frac{\sqrt{3}}{2}a$$
1) По свойству медиан треугольника: $$AM=\frac{2}{3}AD=\frac{\sqrt{3}a}{3};$$$$MD=\frac{1}{3}AD=\frac{\sqrt{3}a}{6}$$
2)$$OM=OD=OE=\frac{1}{2}MD=\frac{\sqrt{3}}{12}$$
3)По свойству касательной $$OE \perp AQ$$, тогда $$\bigtriangleup AOE \sim \bigtriangleup ADQ$$ ; $$AO=AM+MO=\frac{5\sqrt{a}}{12}$$
Можем записать отношение соответственных сторон:$$\frac{AD}{AE}=\frac{AQ}{AO}=\frac{QD}{EO}(1)$$
По свойству касательной и секущей: $$AE^{2}=AM*AD=\frac{a\sqrt{2}}{2}$$
4) Используя равенство под номером (1) получаем: $$AQ=\frac{AD*AO}{AE}=\frac{5\sqrt{2}a}{8}$$
$$QD=\frac{AD*EO}{AE}=\frac{\sqrt{2}a}{8}$$
5) Треугольники ABE и ABQ имеют общий угол и стороны являются продолжением друг друга, тогда: $$\frac{S_{ABE}}{S_{ABQ}}=\frac{AB*AE}{AB*AQ}=\frac{4}{5}$$
$$S_{ABD}=\frac{1}{2}S_{ABC}=\frac{\sqrt{3}a^{2}}{8}$$
$$S_{ABQ}=\frac{BQ}{BD}S_{ABD}=\frac{\frac{1}{2}a-\frac{\sqrt{2}a}{8}}{\frac{1}{2}a}*\frac{\sqrt{3}a^{2}}{8}=$$$$\frac{\sqrt{3}(4-\sqrt{2})a^{2}}{32}$$
$$S_{ABE}=\frac{4}{5}*\frac{\sqrt{3}(4-\sqrt{2})a^{2}}{32}=$$$$\frac{\sqrt{3}(4-\sqrt{2})a^{2}}{40}$$
6)$$S_{BDOE}=S_{BEQ}+S_{QDOE}=$$$$\frac{1}{5}S_{ABQ}+2S_{QDO}=$$$$\frac{1}{5}*\frac{\sqrt{3}(4-\sqrt{2})a^{2}}{32}+2*\frac{1}{2}*\frac{\sqrt{3}a}{12}*\frac{\sqrt{2}a}{8}=$$$$\frac{a^{2}\sqrt{3}(6-\sqrt{2})}{240}$$
7)$$\frac{S_{ABE}}{S_{BEOD}}=\frac{\frac{\sqrt{3}(4-\sqrt{2})a^{2}}{40}}{\frac{a^{2}\sqrt{3}(6-\sqrt{2})}{240}}=$$$$\frac{6(4-\sqrt{2})}{6-\sqrt{2}}=$$$$\frac{6(13-5\sqrt{2})}{17}$$

Задание 4899

Стороны ромба EFGH являются гипотенузами прямоугольных равнобедренных треугольников EAF, FDG, GCH и HBE, причем все эти треугольники имеют общие внутренние точки с ромбом EFGH. Сумма площадей четырехугольника ABCD и ромба EFGH равна 12. Найдите CH. 

Ответ: $$\sqrt{6}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
1) Пусть сторона ромба равна a ($$FG=a$$), острый угол $$F=\alpha$$. Тогда: из $$\bigtriangleup FAE ; \bigtriangleup FDG$$ получаем, что $$FA=\frac{FE}{\sin 45^{\circ}}=FD=\frac{a}{\sqrt{2}}$$ (оба равнобедренные и прямоугольные)
2)$$\angle EFD = \alpha - \angle DFG = \alpha - 45^{\circ}$$
$$\angle GFA = \alpha - \angle EFA = \alpha - 45^{\circ}$$
$$\angle DFA = \alpha - \angle EFD - \angle GFA =90^{\circ} - \alpha$$
Тогда по теореме косинусов из $$\bigtriangleup DFA$$: $$DA=\sqrt{DF^{2}+FA^{2}-2*DF*FA*\cos DFA}=$$$$\sqrt{\frac{a^{2}}{2}+\frac{a^{2}}{2}-2*\frac{a^{2}}{2}*\cos (90^{\circ}-\alpha)}=$$$$\sqrt{a^{2}-a^{2}\sin \alpha}$$
3)$$\angle FEH =180^{\circ} - \alpha$$
$$\angle AEB =\angle FEH - \angle FEA - \angle BEH =90^{\circ} - \alpha$$
Тогда по теореме косинусов из $$\bigtriangleup AEB$$: $$DA=\sqrt{AE^{2}+EB^{2}-2*AE*EB*\cos AEB}=$$$$\sqrt{\frac{a^{2}}{2}+\frac{a^{2}}{2}-2*\frac{a^{2}}{2}*\cos (90^{\circ}-\alpha)}=$$$$\sqrt{a^{2}-a^{2}\sin \alpha}$$
4)Если взять диагонали ромба как оси симметрии, то получаем, что стороны ромба симметричны относительно этих осей, а с учетом того, что треугольники построены прямоугольные и равнобедренные на равных сторонах, то треугольники равны и семметричны так же относительно этих осей. Тогда ABCD - прямоугольник
5)$$S_{ABCD}+S_{EFGH}=AB*AD+EF*FG*\sin F=$$$$\sqrt{a^{2}-a^{2}\sin \alpha}*\sqrt{a^{2}-a^{2}\sin \alpha}+a*a*\sin \alpha=$$$$a^{2}-a^{2}\sin \alpha+a^{2}\sin \alpha=$$$$a^{2}=12=GH$$.
Тогда $$CH=\frac{\sqrt{GH}}{\sqrt{2}}=\frac{\sqrt{12}}{\sqrt{2}}=\sqrt{6}$$

Задание 4946

 На продолжении стороны ВС треугольника АВС за точку В расположена точка Е так, что биссектрисы углов АЕС и АВС пересекаются в точке К, лежащей на стороне АС. Длина отрезка ВЕ = 1, длина отрезка ВС равна 2, градусная мера угла ЕКВ равна $$30^{\circ}$$. Найдите длину стороны АВ. 

Ответ: $$\frac{2}{\sqrt{7}}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
1)Пусть $$EA=a$$. По свойству биссектрис из треугольника EAC: $$\frac{EC}{EA}=\frac{CK}{KA}$$ и треугольника  ABC: $$\frac{BC}{BA}=\frac{CK}{KA}$$ $$\Rightarrow$$ $$\frac{EC}{EA}=\frac{BC}{BA}$$;  $$\Rightarrow$$ $$AB=\frac{EA\cdot BC}{EC}=\frac{a\cdot2}{3}=\frac{2}{3}a$$
2) $$\angle KBA=\alpha=\angle CBK\Rightarrow$$$$\angle KBE=180^{\circ}-\alpha\Rightarrow$$$$\angle BEK=180-(30+180-\alpha)=\alpha-30=\angle KEA\Rightarrow$$$$\angle BEA=2\alpha-60^{\circ}$$
$$\angle CBE=180-2\alpha\Rightarrow$$$$\angle BCE=180-(2\alpha-60+180-2\alpha)=60^{\circ}$$
3)По теореме косинусов из треугольника BCE: $$\sqrt{1}=\sqrt{(\frac{2}{3}a)^{2}+a^{2}-2\cdot\frac{2}{3}a\cdot a\cdot\cos60}\Rightarrow$$$$1=\frac{4}{9}a^{2}+a^{2}-\frac{4}{3}a^{2}\cdot\frac{1}{2}\Rightarrow$$$$1=\frac{13}{5}a^{2}-\frac{6}{9}a^{2}\Rightarrow$$$$\frac{7}{9}a^{2}=1\Rightarrow$$$$a^{2}=\frac{9}{7}$$$$a=\frac{3}{\sqrt{7}}\Rightarrow$$$$AB=\frac{2}{3}\cdot\frac{3}{\sqrt{7}}=\frac{2}{\sqrt{7}}$$

Задание 4993

В треугольнике АВС угол В равен 30°. Через точки А и В проведена окружность радиуса 2, касающаяся прямой АС в точке А. Через точки В и С проведена окружность радиуса 3, касающаяся прямой АС в точке С. Найдите длину стороны АС. 

Ответ: $$\sqrt{6}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$O_{1}$$ - ценрт оружности $$R_{1}=2$$; $$O_{2}$$ - ценрт оружности $$R_{2}=3$$; $$\angle ABC=\alpha$$; $$\angle BAC=\beta$$;

2) $$\angle BO_{2}C=2\angle BCA=2\alpha$$; $$\angle AO_{1}B=2\angle BAC=2\beta$$;

3) $$AB=2R_{1}\sin\beta=4\sin\beta$$; $$BC=2R_{2}\sin\alpha=6\sin\alpha$$; (по теореме синусов) $$\frac{AB}{\sin\alpha}=\frac{BC}{\sin\beta}$$ (из $$\bigtriangleup ABC$$) $$\Rightarrow$$ $$\frac{4\sin\beta}{\sin\alpha}=\frac{6\sin\alpha}{\sin\beta}$$ $$\Leftrightarrow$$ $$4\sin^{2}\beta=6\sin^{2}\alpha$$ $$\Leftrightarrow$$ $$\frac{\sin\beta}{\sin\alpha}=\sqrt{\frac{3}{2}}$$

4) $$\frac{AC}{\sin\angle ABC}=\frac{AB}{\sin\angle ACB}$$ $$\Rightarrow$$ $$AC=\frac{AB}{\sin\angle ACB}\cdot\sin\angle ABC=$$ $$\frac{4\sin\beta}{\sin\alpha}\cdot\sin30^{\circ}=4\cdot\frac{\sqrt{3}}{\sqrt{2}}\cdot\frac{1}{2}=\sqrt{6}$$

Задание 5042

В выпуклом четырёхугольнике ABCD точка Е – точка пересечения диагоналей. Известно, что площадь каждого из треугольников АВЕ и DСЕ равна 1, площадь четырёхугольника АВСD не превосходит 4, АD = 3. Найдите длину стороны ВС. 

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$S_{ABC}=S_{CED}=1$$ $$\Rightarrow$$ $$BE\cdot AE=CE\cdot ED$$ $$\Rightarrow$$ $$\frac{BE}{ED}=\frac{CE}{EA}$$; $$\angle BEC=\angle AED$$ $$\Rightarrow$$ $$\bigtriangleup BEC\sim\bigtriangleup AED$$ $$\Rightarrow$$ дана трапеция.

2) Пусть НМ - высота $$\Rightarrow$$ $$S_{BEC}=\frac{1}{2}BC\cdot HE$$; $$S_{AED}=\frac{1}{2}EM\cdot AD$$. Пусть $$EM=x$$ $$\Rightarrow$$ $$HE=kx$$, где $$k$$ - коэфф. подобия $$\Rightarrow$$ $$BC=k\cdot3$$ $$\Rightarrow$$

$$S_{BEC}+S_{AED}=\frac{1}{2}\cdot3k\cdot kx+\frac{1}{2}\cdot3x=\frac{1}{2}\cdot3x(k^{2}+1)\leq2$$ $$\Rightarrow$$ $$x(k^{2}+1)\leq\frac{4}{3}$$ $$(1)$$

$$S_{ABCD}=\frac{3k+3}{2}\cdot(kx+x)<4$$ $$\Rightarrow$$ $$x(k+1)^{2}\leq\frac{8}{3}$$ $$(2)$$

Поделим первое на второе: $$\frac{k^{2}+1}{(k+1)^{2}}\leq\frac{4}{3}\cdot\frac{3}{8}$$ $$\Leftrightarrow$$ $$\frac{k^{2}+1}{(k+1)^{2}}\leq\frac{1}{2}$$ $$\Leftrightarrow$$ $$2k^{2}+2\leq k^{2}+2k+1$$ $$\Leftrightarrow$$ $$k^{2}-2k+1\leq0$$ $$\Leftrightarrow$$ $$(k-1)^{2}\leq0$$ $$\Leftrightarrow$$ $$k=1$$ $$\Rightarrow$$ $$BC=1\cdot3=3$$

Задание 5089

Дан треугольник KLM. Через точки K и L проведена окружность, центр которой лежит на высоте LF, опущенной на сторону KM. Известно, что точка F лежит на стороне KM. Найдите площадь круга, ограниченного этой окружностью, если $$KL=1$$, $$KM=\frac{\sqrt{3}}{2}$$, $$FM=\frac{\sqrt{3}}{6}$$

Ответ: $$\frac{3}{8}\pi$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$KF=KM-FM=\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{6}=\frac{\sqrt{3}}{3}$$

2) $$\bigtriangleup LKF$$: $$LF=\sqrt{KL^{2}-LF^{2}}=\sqrt{1^{2}-\frac{3}{9}}=\frac{\sqrt{6}}{3}$$;

3) $$\bigtriangleup LKN$$ - прямоугольный, т.к. опирается на диаметр $$\Rightarrow$$ $$\bigtriangleup KLF\sim\bigtriangleup LKN$$ (по 2 углам) $$\Rightarrow$$ $$\frac{KL}{LN}=\frac{LF}{KL}$$ $$\Rightarrow$$ $$KL^{2}=LN\cdot LF$$ $$\Rightarrow$$ $$KL^{2}=LF(LF+FN)$$, пусть $$FN=x$$

$$1^{2}=\frac{\sqrt{6}}{3}(\frac{\sqrt{6}}{3}+x)$$; $$1-\frac{6}{9}=\frac{\sqrt{6}}{3}x$$; $$\Rightarrow$$ $$x=\frac{1}{3}\cdot\frac{3}{\sqrt{6}}=\frac{1}{\sqrt{6}}$$; $$LN=LF+FN=\frac{\sqrt{6}}{3}+\frac{1}{\sqrt{6}}=\frac{2\sqrt{6}}{6}+\frac{\sqrt{6}}{6}=$$ $$\frac{3\sqrt{6}}{6}=\frac{\sqrt{6}}{2}$$

4) $$R=\frac{1}{2}LN$$ (радиус описанной вокруг прямоугольного треугольника окружности равен половине гипотенузы) $$\Rightarrow$$ $$R=\frac{\sqrt{6}}{4}$$

5) $$S=\pi R^{2}=\frac{6}{16}\pi=\frac{3}{8}\pi$$

Задание 5176

В прямоугольном треугольнике ABC проведена биссектриса ВЕ, а на гипотенузе ВС взята точка М так, что $$EM \perp BE$$. Найдите площадь треугольника АВС, если СМ=1, СЕ=2..

Ответ: 3,84
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
1) Пусть $$\angle ABE = \angle EBM = \alpha$$. Тогда из треугольника ABE $$\angle BEA = 90- \alpha$$. Тогда $$\angle MEC = 180 - (90 - \alpha) - 90 = \alpha$$ (как смежный с $$\angle AEM$$)
2)$$\angle C$$ - общий, тогда треугольники BEC и EMC подобны по двум углам. Тогда: $$\frac{MC}{EC}=\frac{EC}{BC}$$
Пусть BM=x, тогда BC = x+1:
$$\frac{1}{2}=\frac{2}{x+1}$$, следовательно $$x=3$$
3) По свойству биссектрис:
$$\frac{AB}{BC}=\frac{AE}{EC}$$
Пусть AB=a ; AE=b, тогда:
$$\frac{a}{4}=\frac{b}{2}$$, следовательно, $$a=2b$$
4)По теореме Пифагора из треугольника ABC:
$$(2b)^{2}+(b+2)^{2}=4^{2}$$
$$5b^{2}+4b-12=0$$
$$b=1,2$$
Тогда $$S_{ABC}=\frac{1}{2}*2*1,2*(1,2+2)=3,84$$

Задание 5226

 В треугольнике АВС точка D на стороне ВС и точка F на стороне АС расположены так, что ВD:DC=3:2, AF:FC=3:4. Отрезки AD и BF пересекаются в точке Р. Найдите отношение АР:PD. 

Ответ: $$\frac{5}{4}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

ВD:DC=3:2, пусть BD=3x, тогда DC=2x, а BC=5x. AF:FC=3:4, пусть AF=3y, тогда FC=4y. По теореме Менелая для треугольника BFC: $$\frac{AP}{PD}*\frac{BD}{BC}*\frac{CF}{AF}=1\Leftrightarrow$$$$\frac{AP}{PD}*\frac{3x}{5x}*\frac{4y}{3y}=1\Leftrightarrow$$$$\frac{AP}{PD}=\frac{5}{4}$$

Задание 5274

Сторона равностороннего треугольника АВС равна 14. Через его центр проведена прямая $$l$$, пересекающая сторону ВС и проходящая на расстоянии $$\sqrt{7}$$ от середины стороны АВ. В каком отношении прямая $$l$$ делит сторону ВС? 

Ответ: $$\frac{3}{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
1) $$CH$$ - медиана, высота $$\Rightarrow$$ $$CH=AB\cdot\sin60^{\circ}=7\sqrt{3}$$; $$OH=\frac{1}{3}CH=\frac{7\sqrt{3}}{3}$$
2)  из $$\bigtriangleup HKO$$: $$\sin HOK=\frac{HK}{OH}=\frac{\sqrt{7}}{7\sqrt{3}}=\sqrt{\frac{3}{7}}$$
3) $$OC=\frac{2}{3}CH=\frac{14\sqrt{3}}{3}$$; $$\angle OCM=30^{\circ}$$; $$\bigtriangleup MOC$$ по т. синусов: $$\frac{OM}{\sin OCM}=\frac{MC}{\sin MOC}$$; $$OM=\frac{MC\cdot\sin OCM}{\sin MOC}=\frac{MC\cdot\sqrt{7}}{2\sqrt{3}}$$; $$\cos HOK=\sqrt{1-\sin^{2}HOK}=\frac{2}{\sqrt{7}}$$;
Пусть $$MC=x$$, тогда $$OM=\frac{x\sqrt{7}}{2\sqrt{3}}$$
4) По т. косинусов: $$MC^{2}=OM^{2}+OC^{2}-2OM\cdot MC\cos MOC$$; $$x^{2}=\frac{7x^{2}}{4\cdot3}+\frac{196\cdot3}{9}-\frac{2\cdot\sqrt{7}x\cdot14\sqrt{3}\cdot2}{2\sqrt{3}\cdot3\cdot\sqrt{7}}$$;
$$x^{2}=\frac{7x^{2}}{12}+\frac{196}{3}-\frac{28x}{3}$$ $$|\cdot12$$
$$5x^{2}+112x-784=0$$; $$D=12544+15680=168^{2}$$; $$x_{1}=\frac{-112+168}{10}=5,6$$; $$x_{2}<0$$
$$MC=5,6$$ $$\Rightarrow$$ $$BM=14-5,6=8,4$$; $$\frac{BM}{MC}=\frac{8,4}{5,6}=\frac{3}{2}$$

Задание 5322

Диагонали вписанного в окружность четырехугольника ABCD пересекаются в точке Е, причем AD·СЕ = DС·АЕ, BD = 6, $$\angle ADB = 22,5^{\circ}$$. Найдите площадь четырехугольника ABCD

Ответ: $$9\sqrt{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) AD*CE=CD*AE, тогда $$\frac{AD}{CD}=\frac{AE}{CE} \Leftrightarrow$$ DB - биссектриса в треугольнике ADC. Тогда $$\angle BDA = \angle CDB$$ , но $$\angle BDA = \angle BCA$$ и $$\angle CDB = \angle BAC$$ (как вписанные), следовательно $$\angle BCA = angle BAC$$ , тогда треугольник ABC - равнобедренный

2)Построим продолжение DС за точка C и отложим из B отрезок BF = DB так, что $$F \in DC$$. Тогда треугольник DBF - равнобедренный. Так как AB = BC, DB = BF и из равнобедренности DBF $$\angle BDF = \angle BFD$$, но и $$\angle BDA = \angle CDB$$, тогда $$\angle BDA=\angle BFD$$. $$\angle BAD + \angle DCB = 180$$ по свойству вписанного четырехугольника, но и $$\angle BCF + \angle DCB = 180$$ по свойству смежных углов, тогда $$\angle BAD = \angle BCF$$ и, следовательно, треугольники ABD и BCF равны, следовательно, $$S_{ADF}=S_{ABCD}$$

3)$$\angle DBF = 180 - 2*22.5 = 135$$ (из треугольника DBF), $$S_{DBF}=\frac{1}{2}DB*DF*\sin DBF$$, то есть $$S_{DBF}=0,5*6*6*\frac{\sqrt{2}}{2}=9\sqrt{2}$$

Задание 5369

На боковой стороне АВ трапеции АВСD взята точка М таким образом, что АМ : МВ = 2 : 3. На противоположной стороне СD взята такая точка N, что отрезок MN делит трапецию на части, одна из которых по площади втрое больше другой. Найдите отношение CN : ND, если известно, что BC : AD = 1 : 2

Ответ: $$\frac{3}{29}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
 
1)Продолжим боковые стороны до пересечения в точке P: $$\frac{BC}{AD}=\frac{1}{2}$$, тогда BC - средняя линия в треугольнике APD
2)Пусть $$S_{MBCN}=S$$, тогда $$S_{AMND}=3S$$, тогда $$S_{ABCD}=4S$$
3)Из подобия треугольников PBC и APD и свойства средней линии треугольника : $$\frac{S_{BPC}}{S_{ABCD}}=\frac{1}{3}$$, следовательно, $$S_{BPC}=\frac{4S}{3}$$
4)Пусть AM=2x, тогда MB=3x ; AB=5x=BP. Пусть CN=q, CD=PC=z. Тогда $$\frac{S_{BMN}}{S_{PAD}}=$$$$\frac{\frac{4s}{3}+S}{\frac{4s}{3}+4S}=$$$$\frac{PM*PN}{PA*PD}=$$$$\frac{8x*(z+q)}{10x*2x}$$. Получаем, что $$\frac{35z}{32}=z+q \Leftrightarrow$$$$q=\frac{3}{32}z=CN\Leftrightarrow$$$$z-q=\frac{29}{32}z=ND\Leftrightarrow$$$$\frac{CN}{ND}=\frac{3}{29}$$
Примечание: возможен вариант построения точки N ближе к D, чтобы распределение площадей получилось противоположным $$S_{MBCN}=3S$$, тогда $$S_{AMND}=S$$, но при подобном приведенному решению мы получим невозможность существования подобного разбиения площадей (точка N будет лежать вне стороны CD) - попробуйте решить самостоятельно.

Задание 5417

В треугольнике АВС, площадь которого равна S, точка М середина стороны ВС, точка N на продолжении стороны АВ и точка К на продолжении стороны АС выбраны так, что AN = ½ AB, CK = ½ AC. Найти площадь треугольника MNK.

Ответ: $$\frac{5S}{4}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1)$$S_{MCR}=\frac{1}{4}*S$$

2)Пусть $$MR\left | \right |AC\Rightarrow AR=RB$$(RM-средняя линия)$$\Rightarrow AR=0,5*y=NA\Rightarrow AL$$-средняя линия $$\Rightarrow NL=LM\Rightarrow AL=\frac{1}{2}*RM=\frac{1}{4}*AC=\frac{1}{4}x ; LC=\frac{3}{4}x ;$$

3)$$S_{NMK}=S_{MCK}+S_{MCL}+S_{NLK}$$ $$S_{MCL}=\frac{1}{2}*\frac{3}{4}*S=\frac{3}{8}*S\Rightarrow S_{LMK}=\frac{3}{8}*S=\frac{5*S}{8};$$

4)KL-медиана$$\Rightarrow S_{MLK}=S_{KLN}=\frac{5*S}{8};$$

5) $$S_{MNK}=2*\frac{5*S}{8}=\frac{109}{8}=\frac{5S}{4};$$

Задание 5598

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.

Ответ:

Задание 5599

Площадь треугольника ABC равна 80. Биссектриса AD пересекает медиану BK в точке E, при этом BD:CD=1:3. Найдите площадь четырехугольника EDCK.

Ответ:

Задание 5600

В треугольнике ABC на его медиане BM отмечена точка K так, что BK : KM = 4 : 1. Прямая AK пересекает сторону BC в точке P. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.

Ответ:

Задание 5601

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади четырехугольника KPCM к площади треугольника ABC.

Ответ:

Задание 5602

Найдите острые углы прямоугольного треугольника, если его гипотенуза равна 12, а площадь равна 18.

Ответ:

Задание 5603

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 96. Найдите стороны треугольника ABC .

Ответ:

Задание 5604

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 40:1, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 30.

Ответ:

Задание 5605

В треугольнике ABC на его медиане BM отмечена точка K так, что BK:KM=3:7 . Найдите отношение площади треугольника ABK к площади треугольника ABC

Ответ:

Задание 5606

Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если от‐ ношение диагоналей параллелограмма равно 28.

Ответ:

Задание 5607

Боковые стороны AB и CD трапеции ABCD равны соответственно 20 и 25, а основание BC равно 5. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.

Ответ:

Задание 5608

Основания трапеции относятся как 1:3. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Ответ:

Задание 5609

Углы при одном из оснований трапеции равны 85° и 5°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 11 и 1. Найдите основания трапеции.

Ответ:

Задание 5610

В равнобедренной трапеции ABCD боковые стороны равны меньшему основанию BC. К диагоналям трапеции провели перпендикуляры BH и CE. Найдите площадь четырёхугольника BCEH, если площадь трапеции ABCD равна 36 .

Ответ:

Задание 5611

В трапеции проведен отрезок, параллельный основаниям и делящий ее на две трапеции одинаковой площади. Найдите длину этого отрезка, если основания трапеции равны $$24\sqrt{2}$$ см и $$7\sqrt{2}$$ см.

Ответ:

Задание 5612

В равнобедренную трапецию, периметр которой равен 120, а площадь равна 540, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.

Ответ:

Задание 5613

Три окружности с центрами O1, O2 и O3 и радиусами 2,5, 0,5 и 4,5 соответственно попарно касаются внешним образом. Найдите угол O1O2O3

Ответ:

Задание 5614

Две окружности с центрами O1 и O3 и радиусами 4,5 и 2,5 касаются друг с другом внешним образом и внутренним образом касаются окружности с центром O2 радиусом 7,5. Найдите угол O1O2O3

Ответ:

Задание 5615

Три окружности, радиусы которых равны 2, 3 и 10, попарно касаются внешним образом. Най‐ дите радиус окружности, вписанной в треугольник, вершинами которого являются центры этих трёх окружностей.

Ответ:

Задание 5616

Две касающиеся внешним образом в точке K окружности, радиусы которых равны 16 и 48, вписаны в угол с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.

Ответ:

Задание 5617

Окружность радиуса 4 касается внешним образом второй окружности в точке B. Общая касательная к этим окружностям, проходящая через точку B, пересекается с некоторой другой их общей касательной в точке A. Найдите радиус второй окружности, если AB=6.

Ответ:

Задание 5618

В окружности с центром в точке O проведены две хорды AB и CD. Прямые AB и CD перпендикулярны и пересекаются в точке M, лежащей вне окружности. При этом AM=36, BM=6, $$CD=4\sqrt{46}$$. Найдите OM.

Ответ:

Задание 5619

В прямоугольном треугольнике ABC с прямым углом B, проведена биссектриса угла A. Известно, что она пересекает серединный перпендикуляр, проведённый к стороне BC в точке K. Найдите угол BCK, если известно, что угол ACB равен 40°.

Ответ:

Задание 5620

Окружности радиусов 60 и 90 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.

Ответ:

Задание 5621

Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 8 с центром вне этого треугольника касается продолжений боковых сторон треугольника и касается основания AC в его середине . Найдите радиус окружности, вписанной в треугольник ABC.

Ответ:

Задание 5622

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответ‐ ственно равны 5, 4 и 3. Найдите площадь параллелограмма ABCD.

Ответ:

Задание 5623

Высоты остроугольного треугольника ABC, проведённые из точек B и C, продолжили до пе‐ ресечения с описанной окружностью в точках B1 и C1 . Оказалось, что отрезок B1C1 проходит через центр описанной окружности. Найдите угол BAC.

Ответ:

Задание 5624

В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ = 14, SQ = 4 .

Ответ:

Задание 5625

Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 96, тангенс угла BAC равен $$\frac{8}{15}$$. Найдите радиус окружности, вписанной в треугольник ABC.

Ответ:

Задание 5626

На стороне AB треугольника ABC взята точка D так, что окружность, проходящая через точки A, C и D, касается прямой BC. Найдите AD, если AC = 40, BC = 34 и CD = 20.

Ответ:

Задание 5627

Диагонали четырёхугольника ABCD, вершины которого расположены на окружности, пересекаются в точке M. Известно, что ABC= 72°, BCD= 102°, AMD= 110°. Найдите $$\angle ACD$$.

Ответ:

Задание 5628

Длина катета AC прямоугольного треугольника ABC равна 8 см. Окружность с диаметром AC пересекает гипотенузу AB в точке M. Найдите площадь треугольника ABC, если известно, что AM:MB=16:9.

Ответ:

Задание 5629

На каждой из двух окружностей с радиусами 3 и 4 лежат по три вершины ромба. Найдите его сторону.

Ответ:

Задание 5630

Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Длина стороны AC равна 4. Найдите радиус описанной окружности треугольника ABC.

Ответ:

Задание 5631

Четырёхугольник ABCD со сторонами AB = 25 и CD = 16 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.

Ответ:

Задание 5632

Биссектриса CM треугольника ABC делит сторону AB на отрезки AM = 17 и MB = 19. Каса‐ тельная к описанной окружности треугольника ABC, проходящая через точку C, пересекает пря‐ мую AB в точке D. Найдите CD

Ответ:

Задание 5634

В треугольнике ABC известны длины сторон AB = 84, AC = 98, точка O — центр окружности, описанной около треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.

Ответ:

Задание 5635

Окружность проходит через вершины A и C треугольника ABC и пересекает его стороны AB и AC в точках K и E соответственно. Отрезки AE и CK перпендикулярны. Найдите $$\angle ABC$$, если KCB = 20°.

Ответ:

Задание 5636

Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 9 и 11 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB если $$\cos \angle BAC=\frac{\sqrt{11}}{6}$$

Ответ:

Задание 5637

На стороне BC остроугольного треугольника ABC (AB ≠ AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD = 27, MD = 18, H — точка пересечения высот треугольника ABC. Найдите AH.

Ответ:

Задание 5638

В трапеции ABCD основания AD и BC равны соответственно 49 и 21, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB = 20.

Ответ:

Задание 5639

В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность прохо‐ дит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD = 8, BC = 4.

Ответ:

Задание 5640

В треугольнике ABC биссектриса угла A делит высоту, проведённую из вершины B, в отношении 17:15, считая от точки B. Найдите радиус окружности, описанной около треугольника ABC, если BC=16.

Ответ:

Задание 6073

В треугольнике АВС биссектриса АD делит сторону ВС на отрезки ВD и DС, причем ВD : DС = 3:2. На стороне АС выбрана точка Е такая, что биссектриса АD пересекает ВЕ в точке F и ВF : FЕ = 5 : 2. Найдите площадь четырехугольника FDCE, если площадь треугольника АВС равна 70 см2 .

Ответ: 16
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) По т. Менелая из $$\Delta ADC:$$

$$\frac{BF}{FE}*\frac{EA}{AC}*\frac{CD}{BD}=1\Rightarrow$$ $$\frac{EA}{AC}=\frac{2}{5}*\frac{3}{2}=\frac{3}{5}\Rightarrow \frac{AE}{EC}=\frac{3}{2}$$;

2) по т. Менелая $$\Delta BEC$$:

$$\frac{AF}{FD}*\frac{DB}{BC}*\frac{CE}{EA}=1\Rightarrow \frac{AF}{FD}=\frac{5}{3}*\frac{3}{2}=\frac{5}{2}$$

3) $$S_{ADC}= \frac{DC}{BC}; S_{ABC}=\frac{2}{5}*70=28$$

4) $$\frac{S_{AFE}}{S_{ADC}}=\frac{AF*AE}{AD*AC}=\frac{\frac{5}{7}AD*\frac{3}{5}AC}{AD*AC}=\frac{3}{7}$$, тогда $$S_{FDCE}=\frac{4}{7}*S_{ADC}=\frac{4}{7}*28=16$$

Задание 6120

На диагонали BD прямоугольной трапеции ABCD с прямым углом ADС и основаниями ВС и АD, взята точка К так, что ВК : КD = 1 : 3. Окружность с центром в точке К касается прямой АD и пересекает прямую ВС в точках Р и М. Найдите длину стороны АВ, если ВС = 9, АD = 8, РМ = 4.

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

  1. Пусть Е - точка касания, проведем перпендикуляр через E и K (свойство радиуса в точку касания). Пусть EK пересекает CB в точке F
  2. Так как $$EF\perp PM$$, то $$FP=FM$$ (из равенства треугольников KFP и KFM). Так же $$KE=KP=K=R$$ (радиусы)
  3. Треугольники KED и KFB подобный (так как дана трапеция), тогда $$\frac{KF}{KE}=\frac{KB}{KD}=\frac{1}{3}$$, тогда $$KF=\frac{1}{3}KE=\frac{R}{3}$$
  4. из треугольника PKF: $$KP^{2}=PF^{2}+KF^{2}$$ или $$R^{2}=\frac{1}{9}R^{2}+4$$. Отсюда $$R=\frac{3}{\sqrt{2}}$$
  5. Опустим $$AH\perp BC$$ (AH пересекает BC в точке H). Тогда $$AH=EK+KF=\frac{4}{3}R=2\sqrt{2}$$, $$HB=BC-AD=1$$
  6. Из треугольника AHB: $$AB=\sqrt{1^{2}+(2\sqrt{2})^{2}}=3$$

Задание 6168

Точки K, L, M, N, P расположены последовательно на окружности радиуса $$2\sqrt{2}$$ . Найдите площадь треугольника KLM, если LM || KN, KM || NP, MN || LP, а угол LOM равен 45, где О – точка пересечения хорд LN и MP

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$LM\left | \right | KN\Rightarrow \angle LMK=\angle MKN$$(накрест лежащие)$$\Rightarrow \cup LK=\cup MN$$(вписанные углы равны)

$$MK \left | \right |NP\Rightarrow \angle MKN=\angle KNP\Rightarrow \cup KP=\cup MN=\cup LK.$$

$$LP\left | \right | MN\Rightarrow \angle LPM=\angle PMN\Rightarrow \cup LM=\cup NP.$$

2)Пусть $$\cup KL=\alpha$$ и $$\cup LM=\beta .$$

$$\angle LOM=\angle NOP$$(вертикальные) ,но т.к.

$$\cup LM=\cup NP$$, то $$\angle LOM-\frac{\cup LM+\cup PN}{2}=\beta =45$$

3)$$\Delta LPK : LK=2R \sin LPK= 2R \sin 45$$

$$\Delta LPM: LM=2R \sin LPM =2R \sin 22,5$$

$$S_{\Delta LKM}=\frac{1}{2} *LK*LM* \sin KLM=$$$$\frac{1}{2} *2R \sin 22,5 * \sin (90+22,5)=$$$$2R^{2}* \sin 22,5 * \cos 22,,5 * \sin 45=R^{2}* \sin^{2} 45=4$$

Задание 6215

Внутри параллелограмма ABCD взята точка K так, что треугольник CKD равносторонний. Известно, что расстояния от точки K до прямых AD, AB и BC равны соответственно 3, 6 и 5. Найдите периметр параллелограмма.

Ответ: $$\frac{49\sqrt{3}}{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

   1) Пусть KN=3, KP=5, KM=6,$$KQ\perp DC$$

KD=KC=DC=Q, тогда:

$$\Delta KDC ND=\sqrt{a^{2}-3^{2}}$$

$$\Delta KPC PC=\sqrt{a^{2}-5^{2}}$$

   2) Опустим $$DH\perp BC$$, тогда DH=NP=8,

$$CH=ND-PC=\sqrt{a^{2}-3^{2}}-\sqrt{a^{2}-5^{2}}$$

Тогда из $$\Delta DHC:$$

$$a^{2}=8^{2}+(\sqrt{a^{2}-3^{2}}-\sqrt{a^{2}-5^{2}})^{2}$$

$$a^{2}-8^{2}=a^{2}-9+a^{2}-25-2\sqrt{a^{4}-34a^{2}+225}$$

$$2\sqrt{a^{4}-34a^{2}+225}=a^{2}+30$$

$$4a^{4}-136a^{2}+900=a^{4}+60a^{2}+900$$

$$3a^{4}-196a^{2}=0$$

$$3a^{2}(a^{2}-\frac{96}{3})=0$$

a=0-не может быть

$$a=\pm \sqrt{\frac{196}{3}}=\pm \frac{14}{\sqrt{3}}$$ отрицательным не может быть

   3) Из $$\Delta KDC KQ=KC*\sin C=\frac{14}{\sqrt{3}}*\frac{\sqrt{3}}{2}=7\Rightarrow MQ=13$$

   4) $$S_{ABCD}=MP*BC=MQ*DC$$

$$BC=\frac{MQ*DC}{NP}=\frac{13*14}{\sqrt{3}}{8}=\frac{91}{4\sqrt{3}}$$

   5) $$P_{ABCD}=2(\frac{14}{\sqrt{3}}+\frac{91}{4\sqrt{3}})=\frac{147}{2\sqrt{3}}=\frac{49\sqrt{3}}{2}$$

Задание 6263

В равнобедренной трапеции АВСD углы при основании АD равны 30, диагональ АС является биссектрисой угла ВАD. Биссектриса угла ВСD пересекает основание АD в точке М, а отрезок ВМ пересекает диагональ АС в точке К. Найдите площадь треугольника АКМ, если площадь трапеции АВСD равна $$2+\sqrt{3}$$ см2 .

Ответ: $$\frac{3}{\sqrt{3}+1}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть $$AB=CD=a$$, $$\angle BAC=\angle CAD$$(AC-биссектриса ), $$\angle CAD=\angle ACB$$(накрест лежащие),тогда $$\angle BAC=\angle BCA\Rightarrow$$ $$AB=BC=a$$

     2) Аналогично для $$\Delta CMD$$ : $$\angle BCM=\angle CMD$$, $$\angle BCM=\angle MCD$$, тогда $$\angle CMD=\angle MCD$$ и $$CD=MD=a$$

     3) из п.2 и параллельности BC и MD получим, что BCDM-параллелограмм; $$BM=CD=a$$, $$\Delta A_{1}BM$$ -равнобедренный; $$\angle ABM=180-2*30=120$$

По теореме косинусов : $$AM=\sqrt{AB^{2}+BM^{2}-2AB*BM*\cos ABM}=$$$$\sqrt{a^{2}+a^{2}-2*a*a*\cos 120}=a\sqrt{3}$$

     4) AK-биссектриса , тогда $$\frac{AB}{AM}=\frac{AK}{KM}=$$$$\frac{a}{\sqrt{30}}=\frac{1}{\sqrt{3}}$$, тогда $$\frac{KM}{BM}=\frac{\sqrt{3}}{\sqrt{3}+1}$$ и $$S_{\Delta AKM}=\frac{\sqrt{3}}{\sqrt{3}+1}S_{ABM}$$

     5) Пусть $$CN\perp AD$$,тогда из $$\Delta CND$$: $$CH=CD*\sin D=\frac{a}{2}$$

     6) $$S_{ABD}=\frac{a+a+a\sqrt{3}}{2}*\frac{a}{2}=$$$$\frac{a^{2}}{4}(2+\sqrt{3})=2+\sqrt{3}\Rightarrow$$ $$a^{2}=4\Rightarrow a=2$$

     7)$$S_{ABM}=\frac{1}{2}*a*a* \sin 120=$$$$\frac{\sqrt{3}a^{2}}{4}=\sqrt{3}$$

$$S_{AKM}=\frac{\sqrt{3}}{\sqrt{3}+1}*\sqrt{3}=$$$$\frac{3}{\sqrt{3}+1}$$

Задание 6311

В равнобедренной трапеции ABCD длина боковой стороны АВ равна 2 и длина меньшего основания ВС равна 2. Найдите площадь трапеции, если $$BD\perp AB$$.

Ответ: $$3\sqrt{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть $$\angle DBC=\alpha$$ , тогда т.к. BC=CD, $$\angle BCD=\alpha$$, $$\angle C=180-2\alpha$$

     2) По свойству углов трапеции $$\angle C+\angle D=180\Rightarrow$$ $$\angle D=180-(180-2\alpha )=2\alpha$$ $$\Rightarrow \angle BDA=\alpha$$

      3) Пусть BD=y. Тогда из $$\Delta BCD$$:

$$CD^{2}=BC^{2}+AD^{2}-2BC*AD*\cos CBD$$

$$2^{2}=2^{2}+y^{2}-2*2*y*\cos \alpha \Leftrightarrow$$ $$y^{2}-4y*\cos \alpha =0$$

$$y(y-4\cos\alpha )=0$$, т.к. y-длина, то $$y\neq 0$$, тогда $$y-4\cos \alpha =0\Rightarrow y=4\cos\alpha$$

     4) Из $$\Delta ABD$$:

$$\frac{AB}{BD}=tgBDA\Rightarrow$$ $$\frac{2}{4\cos\alpha }=tg\alpha =\frac{\sin\alpha }{\cos\alpha }\Leftrightarrow$$ $$\sin\alpha =\frac{1}{2}\Rightarrow$$ $$\alpha =30\Rightarrow$$ $$y=4*\frac{\sqrt{3}}{2}=2\sqrt{3}$$

     5) $$S_{ABCD}=S_{BCD}+S_{ABD}=$$$$\frac{1}{2}*BC*BD*\sin CBD+\frac{1}{2}*AB*BD=$$$$\frac{1}{2}*2*2\sqrt{3}*\frac{1}{2}+\frac{1}{2}*2*2\sqrt{3}=$$$$\sqrt{3}+2\sqrt{3}=3\sqrt{3}$$

Задание 6358

В выпуклом четырехугольнике KLMN отрезок MS, соединяющий вершину М с точкой S, расположенной на стороне КN, пересекает диагональ LN в точке О. Известно, что KL : MN = 6 : 7, KM : ON = 2 : 1 и $$\angle KLN + \angle KMN=180$$. Найдите отношение отрезков MO и OS.

Ответ: $$\frac{4}{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть $$KM\cap LN=P$$, $$\angle KLN=\alpha$$ , тогда $$\angle KMN=180-\alpha$$ ,$$\angle LPK=\angle MPN=\beta$$ (вертикальные)

     2) из $$\Delta LPK$$ по теореме синусов: $$\frac{KP}{\sin \alpha }=\frac{LK}{\sin \beta }(1)$$

Из $$\Delta PMN : \frac{PN}{\sin (180-\alpha )}=\frac{MN}{\sin \beta }$$

С учетом , что $$\sin \alpha =\sin (180-\alpha )$$, получаем: $$\frac{PN}{\sin \alpha }=\frac{MN}{\sin \beta }(2)$$

Поделим (1) и (2): $$\frac{KP}{PN}=\frac{LK}{MN}=\frac{6}{7}$$

     3) Пусть KM=2y; ON=y, тогда KP=6x, PN=7x, PM=2y-6x, PO=7x-y; 

     4)По т. Менелая из $$\Delta KPN$$ и секущей MS : $$\frac{MO}{OS}*\frac{SN}{NK}*\frac{KP}{PM}=1$$

Пусть $$\frac{SO}{OS}=m$$, тогда $$m*\frac{SN}{SN+SK}*\frac{6x}{2y-6x}=1(3)$$

По т. Менелая из $$\Delta KMS$$ и секущей NP: $$\frac{NO}{OP}*\frac{PM}{MK}*\frac{MS}{SN}=1$$

Пусть $$\frac{SK}{SN}=n$$, тогда $$\frac{SN}{SN+SK}=\frac{\frac{SN}{SN}}{\frac{SN}{SN}+\frac{SK}{SN}}=\frac{1}{1+n}$$

Получаем: $$\frac{y}{7x-y}*\frac{2y-6x}{2y}*n=1(4)$$

Выразим в (3) m: $$m=\frac{2y-6x}{6x}*(1+n)=\frac{(y-3x)(1+n)}{3x}(5)$$

Выразим в (4) n: $$n=\frac{y}{y-3x}*\frac{7x-y}{y}=\frac{7x-y}{y-3x}$$

Выразим в (5): $$m=\frac{(y-3x)(1+\frac{7x-y}{y-3x})}{3x}=$$$$\frac{y-3x+7x-y}{3x}=\frac{4x}{3x}=\frac{4}{3}$$

Задание 6405

В остроугольном треугольнике АВС на высоте AD взята точка М, а на высоте ВР – точка N так, что углы ВМС и АNС – прямые. Расстояние между точками М и N равно $$4+2\sqrt{3}$$ , $$\angle MCN = 30$$. Найдите биссектрису СL треугольника CMN

Ответ: $$7+4\sqrt{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

   

     1) $$\angle APB=\angle ADB=90$$ ,т.к. опирается на AB, то $$A_{1},B_{1},D_{1},P_{1}$$ лежат на одной окружности .

     2) $$\angle PDA =\angle PBA$$ (вписаные , на одну дугу)

$$\angle A=90-\angle PBA(\Delta PBA)$$

$$\angle PDC=90-\angle PDA(\Delta ADC)$$

Тогда $$\angle A=\angle PDC$$, и т.к. $$\angle C$$ - общий , то $$\Delta ABC\sim \Delta PDC\Rightarrow$$ $$\frac{CB}{CP}=\frac{AC}{CD}\Leftrightarrow$$ $$AC*CP=BC*CD(1)$$

     3) из $$\Delta ACN :CN^{2}=AC*CP$$

Из $$\Delta CMB: CM^{2}=BC*CD$$

С учетом (1): $$CN^{2}=CM^{2}\Rightarrow$$ $$CN=CM$$ и $$\Delta CMP$$ равнобедренный

     4) Пусть CH- биссектриса , она и медиана и высота . $$NH=\frac{1}{2} NM=2+\sqrt{3}$$

$$\angle HCN=\frac{1}{2}\angle MCN=15$$

Из $$\Delta CHN \frac{HN}{HC}=tg \angle HCN\Rightarrow$$ $$HC=\frac{2+\sqrt{3}}{tg 15}$$

$$tg 15=\frac{\sin 30}{1+\cos 30}=\frac{1}{2+\sqrt{3}}$$

$$HC=(2+\sqrt{3})^{2}=7+4\sqrt{3}$$

Задание 6452

На диагонали BD прямоугольной трапеции ABCD ($$\angle D=90^{\circ}$$, ВС ॥ AD) взята точка Q так, что BQ : QD = 1 : 3. Окружность с центром в точке Q касается прямой AD и пересекает прямую ВС в точках Р и К. Найдите длину стороны АВ, если ВС = 9, AD = 8, РК = 4

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть F точка касания и $$CD=x$$. Опустим перпендикуляры FH(через Q) и $$AC_{1}$$. Тогда $$CD=FH=AC_{1}=x$$

     2) $$\Delta QHB\sim \Delta DCB$$: $$\frac{CD}{QH}=\frac{BD}{BQ}\Rightarrow$$ $$QH=\frac{1}{4}EB=\frac{1}{4}x\Rightarrow$$$$FQ=x-\frac{1}{4}x=\frac{3}{4}x$$. Но QP=QF (радиус)

     3) из $$\Delta QHP:$$ $$PH=\frac{1}{2}PK=2$$. Тогда по т. Пифагора : $$PQ^{2}=QH^{2}+PH^{2}\Leftrightarrow$$ $$(\frac{3}{4}x)^{2}=(\frac{1}{4}x)^{2}+2^{2}\Leftrightarrow$$ $$\frac{x^{2}}{2}=4\Rightarrow$$ $$x^{2}=8$$

     4)из $$\Delta AC_{1}B$$ : $$AB=\sqrt{AC_{1}^{2}+C_{1}B^{2}}$$.  $$C_{1}B=CB-AD=9-8=1$$, $$AC_{1}^{2}=x^{2}=8$$, тогда $$AB=\sqrt{8+1}=3$$

Задание 6507

В выпуклом четырехугольнике ABCD отрезок СМ, соединяющий вершину С с точкой М, расположенной на стороне AD, пересекает диагональ BD в точке К. Известно, что СК : КМ = 2 : 1, CD : DК = 5 : 3 и $$\angle ABD+\angle ACD=180^{\circ}$$. Найдите отношение стороны АВ и диагонали АС.

Ответ: $$\frac{5}{9}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть $$\angle ADB =\alpha$$ , $$\angle ADC=\beta$$

по т. Синусов : $$\Delta ABD$$: $$\frac{AB}{\sin \alpha }=\frac{AD}{\sin \angle ABD}(1)$$

$$\sin \angle BAD=$$$$\sin(180-\angle ACD)=$$$$\sin \angle ACD(2)$$

$$\Delta ACD$$ : $$\frac{AD}{\sin \angle ACD}=$$$$\frac{AC}{\sin \beta }(3)$$

Учитывая (1) и (2) и (3) : $$\frac{AB}{\sin \alpha }=\frac{AC}{\sin \beta }\Leftrightarrow$$ $$\frac{AB}{AC}=\frac{\sin\alpha }{\sin \beta }$$

     2) Пусть MK=x $$\Rightarrow$$ CK=2x CM=3x, CD=5y $$\Rightarrow$$ DK=3y, $$\angle CMD=\delta$$

Из $$\Delta MDK$$ : $$\frac{x}{\sin \alpha }=\frac{3y}{\sin \delta }\Rightarrow$$ $$\sin \alpha =\frac{x\sin \delta }{3y}$$

Из $$\Delta MDC$$ : $$\frac{3x}{\sin \beta }=\frac{5y}{\sin \delta }\Rightarrow$$ $$\sin \beta =\frac{3x \sin \delta }{5y}$$

Тогда $$\frac{AB}{AC}=\frac{\sin \alpha }{\sin \beta }=$$$$\frac{x \sin \delta }{3y}*\frac{5y}{3x \sin \delta }=$$$$\frac{5}{9}$$

Задание 6554

В треугольнике КЕМ длина стороны КЕ равна 27, длина биссектрисы КВ равна 24, а длина отрезка МВ равна 8. Найдите периметр треугольника КМВ.

Ответ: 56
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть KE=a=27; KM=b; EB=x; BM=y=8; KB=m=24; $$\angle EKB=\angle BKM=\alpha$$

     2) По свойству биссектрисы: $$\frac{x}{y}=\frac{a}{b}(1)$$

     3) Рассмотрим теорему косинусов для $$\Delta EBK$$ и $$\Delta BMK$$:

$$\left\{\begin{matrix}y^{2}=m^{2}+b^{2}-2mb \cos \alpha\\x^{2}=m^{2}+a^{2}-2ma \cos \alpha\end{matrix}\right.$$

  Умножим первое и второе уравнения на a и b соответственно и вычтем из первого второе :

$$\left\{\begin{matrix}y^{2}a =m^{2}a+b^{2}a-2mab \cos \alpha\\x^{2}b=m^{2}b+a^{2}b-2mab \cos \alpha\end{matrix}\right.$$

  Получим: $$y^{2}a-x^{2}b=m^{2}a+b^{2}a-m^{2}b-a^{2}b$$

  Рассмотрим левую часть равенства: $$y^{2}a-x^{2}b=xy(\frac{ya}{x}-\frac{xb}{y})$$ .С учетом , что $$\frac{x}{y}=\frac{a}{b}$$, получим : $$xy(\frac{b}{a}*a-\frac{a}{b}*b)=xy(b-a).$$

  Рассмотрим правую часть равенства: $$m^{2}a+b^{2}a-m^{2}b-a^{2}b=m^{2}(a-b)-ba(a-b)$$. Получим : $$xy(b-a)=m^{2}(a-b)-ba(a-b)$$.

  Т.к. $$a\neq b$$ (иначе получим равнобедренный), то поделим $$a-b$$: $$-xy=m^{2}-ba\Rightarrow m^{2}=ab-xy(2)$$ - вообще, это формула длины биссектриссы через две стороны и отрезки третьей, но в учебниках за 7-9 класс ее не встречал, потому необходимо ее выводить.

     4) Итого имеем систему: $$\left\{\begin{matrix}\frac{x}{y}=\frac{a}{b}\\m^{2}=ab-xy\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\frac{x}{8}=\frac{27}{b}\\24^{2}=27b-8x\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x=\frac{216}{b}\\576=27b-\frac{8*216}{b}\end{matrix}\right.$$

$$576b=27b^{2}-1728\Leftrightarrow$$ $$27b^{2}-576b-1728=0|:9\Leftrightarrow$$ $$3b^{2}-64b-192=0$$

$$D=4096+2304=6400$$

$$b_{1}=\frac{64+80}{6}=\frac{144}{6}=24$$

$$b_{2}=\frac{64-80}{6}<0$$

     5) $$P_{BMK}=m+y+b=24+8+24=56$$

Задание 6601

В равнобедренном треугольнике ABC (АВ = ВС) проведена биссектриса АМ. Известно, что ВС : МС = 5 : 2. Найдите отношение длины отрезка МС к радиусу окружности, описанной около треугольника АМС.

Ответ: $$\frac{2\sqrt{3}}{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) $$BC:MC =5:2\Rightarrow$$ $$BM:MC=3:2$$. Пусть $$BM=3y\Rightarrow$$ $$MC=2y, BC=5y$$

     2) По свойству биссектрисы: $$\frac{AB}{AC}=\frac{BM}{MC}\Rightarrow$$ $$\frac{AB}{AC}=\frac{3}{2}$$. $$AB=BC=5y\Rightarrow$$ $$AC=\frac{5*2y}{3}=\frac{10y}{3}$$

     3) $$AM=\sqrt{AB*AC-BM*MC}=$$$$\sqrt{5y*\frac{10y}{3}-3y*2y}=$$$$\sqrt{\frac{50y^{2}-12y^{2}}{3}}=$$$$\sqrt{\frac{32 y^{2}}{3}}=$$$$4y\sqrt{\frac{2}{3}}$$

     4) $$S_{AMC}=S_{ABC}*\frac{MC}{BC}$$, $$p_{ABC}=5y+5y+\frac{10y}{3}=\frac{20y}{3}$$

$$S_{ABC}=\sqrt{\frac{20y}{3}*(\frac{20y}{3}-5y)^{2}(\frac{20y}{3}-\frac{10y}{3})}=$$$$\frac{50y^{2}\sqrt{2}}{9}\Rightarrow$$

$$S_{AMC}=\frac{2}{5}*\frac{50y^{2}\sqrt{2}}{9}=$$$$\frac{20y^{2}\sqrt{2}}{9}$$

     5) $$R=\frac{MC*AC}{4 S_{AMC}}\Rightarrow$$ $$\frac{MC}{R}=\frac{4 S_{AMC}}{AM*AC}=$$$$\frac{4*20y^{2}\sqrt{2}}{9}:(4y\frac{\sqrt{2}}{\sqrt{3}}*\frac{10y}{3})=$$$$\frac{2\sqrt{3}}{3}$$

Задание 6649

В трапеции ABCD с боковыми сторонами АВ = 9 и CD = 5 биссектриса угла D пересекает биссектрисы углов А и С в точках М и Nсоответственно, а биссектриса угла В пересекает те же две биссектрисы в точках L и K, причём точка K лежит на основании AD. Найдите отношение МN : KL, если LM : KN = 3 : 7

Ответ: $$\frac{5}{21}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) $$\angle ABK=\angle CBK$$ (BL-биссектриса ), $$\angle CBK=\angle AKB$$ (накрест лежащие) $$\Rightarrow AB=AK=9$$; AL-биссектриса , медиана и высота равнобедренного $$\Delta ABK$$: $$AL\perp BK$$ и $$BL\perp LK(1)$$

     2) Аналогично из $$\Delta CDK$$ : $$CD=DK=5$$; $$DN\perp CK$$; $$CN=NK$$. С учетом (1) - LN-средняя линия $$\Delta BKC$$ и AD=14

     3) $$MK\cap LN=Q$$; $$KM\cap BC=P$$. Тогда : $$LN\left | \right |BC$$, $$BC\left | \right |AD\Rightarrow$$ $$LN\left | \right |AD$$ и : $$\Delta LMN\sim \Delta AMD\Rightarrow$$ $$QN:QL=KD:KA=5:9\Rightarrow$$ $$QL=\frac{9 QN}{5}(2)$$

     4) $$\angle MLN=\angle MNK=90\Rightarrow$$ около $$MNKL$$ можно описать окружность ($$\angle MLK+\angle MNK=180$$) $$\Rightarrow \Delta LMQ\sim \Delta QNM$$: $$\frac{LM}{NK}=\frac{MQ}{QN}=\frac{3}{7}(3)$$

     5) $$\Delta LQK\sim \Delta MQN\Rightarrow$$ $$\frac{MN}{LK}=\frac{MQ}{QL}$$. С учетом (2) : $$\frac{NQ}{QL}=\frac{MQ}{\frac{9QN}{5}}=$$$$\frac{5MQ}{9 QN}(3)$$. С учетом (3): $$\frac{5 MQ}{9 QN}=\frac{5}{9}*\frac{3}{7}=$$$$\frac{5}{21}=\frac{MN}{LK}$$

Задание 6716

Диагонали с длинами $$\sqrt{7}$$ и 4 делят четырёхугольник на части, площади которых образуют арифметическую прогрессию. Найдите площадь четырёхугольника, зная, что угол между большей диагональю и меньшей из сторон равен 30 .

Ответ: $$\sqrt{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть $$S_{AOD}=a_{1}$$; $$S_{AOB}=a_{2}$$; $$S_{BOC}=a_{3}$$; $$S_{COD}=a_{4}$$; $$\angle AOB=\alpha \Rightarrow$$ $$\angle AOD=180-\alpha$$

     2) $$a_{1}=\frac{1}{2}AO*OD \sin (180-\alpha )=$$$$\frac{1}{2}AO*OD \sin \alpha$$ ; $$a_{2}=\frac{1}{2}AO*OB \sin \alpha$$ , $$a_{3}=\frac{1}{2}BO*OC \sin \alpha$$ ; $$a_{4}=\frac{1}{2}CO*OD \sin \alpha$$ . Тогда : $$a_{1}*a_{3}=\frac{1}{4}AO*OD*BO*OC* \sin^{2}\alpha=a_{2}*a_{4}(1)$$

     3) т.к. арифметическая прогрессия ( пусть ее разность d ) , то: $$a_{2}=a_{1}+d$$; $$a_{3}=a_{1}+2d$$; $$a_{4}=a_{1}+3d$$. С учетом (1): $$a_{1}(a_{1}+2d)=(a_{1}+d))(a_{1}+3d)\Leftrightarrow$$ $$a_{1}^{2}+2a_{1}d=a_{1}^{2}+4a_{1}d+3d^{2}\Leftrightarrow$$ $$2a_{1}d+3d^{2}=0\Leftrightarrow$$ $$d(2a_{1}+3)=0$$. $$2a_{1}+3>0$$ ,т.к. $$a_{1}$$ - площадь , тогда d=0, но тогда $$a_{1}=a_{2}=a_{3}=a_{4}(2)$$

     4)С учетом (2) : $$AO *OD=AO*BO$$, $$(a_{1}=a_{2})\Rightarrow$$ $$BO=OD$$; $$AO*OB=BO*OC$$$$(a_{2}=a_{3})\Rightarrow$$$$AO=OD$$. Тогда ABCD-параллелограмм

     5) $$BO=OD=\frac{\sqrt{7}}{2}$$; $$AO=OC=2$$ Из $$\Delta AOB$$ : Пусть AB=x, тогда по теореме косинусов :

$$\frac{7}{4}=x^{2}+4-2x*2\frac{\sqrt{3}}{2}\Leftrightarrow$$ $$x^{2}-2x\sqrt{3}+\frac{9}{4}=0\Leftrightarrow$$ $$D=12-9=3$$

$$x_{1}=\frac{2\sqrt{3}+\sqrt{3}}{2}=\frac{3\sqrt{3}}{2}$$

$$x_{2}=\frac{2\sqrt{3}-\sqrt{3}}{2}=\frac{\sqrt{3}}{2}$$

     6) при $$AB=\frac{3\sqrt{3}}{2}=\frac{\sqrt{27}}{2}$$ из $$\Delta ABC:$$ $$BC=\sqrt{\frac{9*3}{4}+16-2*4*\frac{3\sqrt{3}}{2}*\frac{\sqrt{3}}{2}}=$$$$\sqrt{\frac{27}{4}+16-18}=$$$$\sqrt{\frac{27}{4}-2}=\frac{\sqrt{19}}{2}<AB\Rightarrow$$ не подходит по условию , что AB –меньшая.

Тогда:  $$S_{ABO}=\frac{1}{2}*AB*BO\sin BAO=$$$$\frac{1}{2}*\frac{\sqrt{3}}{2}*2*\frac{1}{2}=$$$$\frac{\sqrt{3}}{4}$$ и $$S_{ABCD}=\sqrt{3}$$

Задание 6743

Длины боковых сторон трапеции равны 6 см и 10 см. В трапецию можно вписать окружность. Средняя линия делит трапецию на части, отношения площадей которых равно $$\frac{5}{11}$$ . Найдите длины оснований трапеции.

Ответ: 2 и 14
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Т.к в ABCD можно вписать окружность , то $$AB+CD=BC+AD=16$$. Пусть BC=x $$\Rightarrow$$ AD=16-x

     2) Пусть $$OL\perp BC$$ и $$ON\perp AD$$ (радиусы в точку касания) , и $$OL=ON=y$$; $$MK=\frac{BC+AD}{2}=8$$ - средняя линия. Тогда $$S_{MBCK}=\frac{x+8}{2}*y$$; $$S_{AMKD}=\frac{16-x+8}{2}*y=\frac{24-x}{2}*y$$

     3) $$\frac{S_{MBCK}}{S_{AMKD}}=\frac{\frac{x+8}{2}*y}{\frac{24-x}{2}*y}=$$$$\frac{5}{11}\Leftrightarrow$$ $$\frac{x+8}{24-x}=\frac{5}{11}\Leftrightarrow$$ $$11x+88=120-5x\Leftrightarrow$$$$16x=32\Leftrightarrow$$ $$x=2\Rightarrow$$ $$BC=2; AD=14$$

Задание 6790

Вершина С прямоугольника ABCD лежит на стороне КМ равнобедренной трапеции АВКМ (ВК || АМ), Р – точка пересечения отрезков АМ и СD. Найдите отношение площадей прямоугольника и трапеции, если АВ = 2ВС, АР = 3ВК.

Ответ: $$\frac{3}{1+2\sqrt{2}}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Построим через $$CH\left | \right |AM$$ ($$H=CH\cap AB$$)

Пусть $$HK\cap BC=N$$; HBKC - равнобедренная трапеция $$\Rightarrow$$ BC=HK

Пусть $$BC=x=HK$$; $$AB=2x\Rightarrow$$ $$S_{ABCD}=BC*AB=2x^{2}$$

     2) $$\Delta BKN\sim \Delta HNC$$; $$\frac{BN}{NC}=\frac{BK}{HC}(1)$$; $$HC\left | \right |AM$$ и $$AB\left | \right |CD\Rightarrow$$ HCPA - параллелограмм и HC=AP

С учетом (1): $$\frac{BN}{NC}=\frac{BK}{HC}=\frac{BK}{AP}=\frac{1}{3}\Rightarrow$$ $$BN=\frac{1}{4}*BC=\frac{x}{4}$$, $$NC=\frac{3}{4}*BC=\frac{3x}{4}=NH$$

     3) из $$\Delta BNH$$: $$BH=\sqrt{NH^{2}-BN^{2}}=\frac{x}{\sqrt{2}}$$

$$tg\angle BHC=\frac{BC}{BH}=\frac{x}{\frac{x}{\sqrt{2}}}=$$$$\sqrt{2}=tg\angle A\Rightarrow$$ $$\sin A=\sqrt{\frac{2}{3}}$$, $$\cos A=\sqrt{\frac{1}{3}}$$

$$HC=\frac{BC}{\sin HBC}=\frac{x\sqrt{3}}{\sqrt{2}}\Rightarrow$$ $$BK=\frac{x\sqrt{3}}{3\sqrt{2}}$$

     4)Пусть $$BL\perp AM$$, тогда из $$\Delta ABL$$: $$AL=AB*\cos A=2x*\frac{\sqrt{1}}{\sqrt{3}}=\frac{2x}{\sqrt{3}}\Rightarrow$$ $$AM=BK+2AL=\frac{x\sqrt{3}}{3\sqrt{2}}+\frac{2*2x}{\sqrt{3}}=$$$$\frac{x(\sqrt{3}+4\sqrt{6})}{3\sqrt{2}}$$, $$BL=AB \sin A=\frac{2x\sqrt{2}}{\sqrt{3}}$$

$$S_{ABKM}=\frac{\frac{x\sqrt{3}}{3\sqrt{2}}+\frac{x\sqrt{3}+x*4\sqrt{6}}{3\sqrt{2}}}{2}*\frac{2x\sqrt{2}}{\sqrt{3}}=$$$$\frac{2x\sqrt{3}+4x\sqrt{6}}{6\sqrt{2}}*\frac{2x\sqrt{2}}{\sqrt{3}}=$$$$\frac{2x^{2}(\sqrt{3}+2\sqrt{6})}{3\sqrt{3}}$$

     5) $$\frac{S_{ABCD}}{S_{ABKM}}=2x^{2}:\frac{2x^{2}(\sqrt{3}+2\sqrt{6})}{3\sqrt{3}}=$$$$\frac{3\sqrt{3}}{\sqrt{3}+2\sqrt{6}}=$$$$\frac{3\sqrt{3}}{\sqrt{3}(1+2\sqrt{2})}=\frac{3}{1+2\sqrt{2}}$$

Задание 6861

На сторонах AB, BC, CD и DA параллелограмма ABCD взяты соответственно точки M, N, K и L, причём AM : MB = CK : KD = 1/2 а BN : NC = DL : LA = 1/3. Найдите площадь четырёхугольника, вершины которого – пересечения отрезков AN, BK, CL и DM, если площадь параллелограмма ABCD равна 1

Ответ: $$\frac{6}{13}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

       1) Введем обозначения, как показано на рисунке.

       2) В силу равенства BLи AD и AB и CD, а так же, $$\frac{AM}{MB}=\frac{CK}{KD}$$ и $$\frac{BN}{NC}=\frac{DL}{AD}$$, получим равенство $$\Delta BKC$$ и $$\Delta AMD$$ ; $$\Delta ABN$$ и $$\Delta CDL$$, и что MBKD, ANCL - параллелограммы $$\Rightarrow$$ $$BK\left | \right |MD$$ и $$AN\left | \right |CL$$

       3) Тогда по т. Фалеса $$\frac{BA_{1}}{BB_{1}}=\frac{BN}{BC}=\frac{1}{4}$$$$\Rightarrow$$, если $$S_{BNA_{1}}=y$$, то $$S_{BCB_{1}}=16y$$ (площади подобных относятся как квадрат коэффициента подобия)$$\Rightarrow$$ $$S_{NCB_{1}A_{1}}=15y$$. Аналогично, $$S_{DC_{1}L}=y$$; $$S_{AD_{1}C_{1}L}=15y$$

Если $$S_{AMD_{1}}=x$$ , то $$S_{ABA_{1}}=9x$$$$\Rightarrow$$ $$S_{MBA_{1}D_{1}}=8x$$

Аналогично, $$S_{CKB_{1}}=x$$; $$S_{B_{1}KDC_{1}}=8x$$ ,пусть $$S_{A_{1}B_{1}C_{1}D_{1}}=Z$$

       4) $$S_{MBKD}=\frac{MB}{AB}*S_{ABCD}=\frac{2}{3}=2*8x+z$$

$$S_{ABCL}=\frac{NC}{BC}*S_{ABCD}=\frac{3}{4}=2*15y+z$$

$$S_{ABCD}=1=2*16y+2*9x+z$$

Получим :

$$\left\{\begin{matrix}16x+z=\frac{2}{3}\\30y+z=\frac{3}{4}\\32y+18x+z=1\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x=\frac{\frac{2}{3}-z}{16}\\y=\frac{\frac{3}{4}-z}{30}\\32(\frac{\frac{3}{4}-z}{30}+18(\frac{\frac{2}{3}-z}{16})+z=1|*120\end{matrix}\right.\Leftrightarrow$$$$8(12-16z)+15(6-9z)+120z=120\Leftrightarrow$$$$143z=66\Leftrightarrow$$$$z=\frac{6}{13}$$

Задание 6909

Диагонали с длинами $$\sqrt{7}$$ и 4 делят четырехугольник на части, площади которых образуют арифметическую прогрессию. Найдите площадь четырёхугольника, зная, что угол между большей диагональю и меньшей из сторон равен 30.

Ответ: $$\sqrt{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть $$S_{AOD}=a_{1}$$; $$S_{AOB}=a_{2}$$; $$S_{BOC}=a_{3}$$; $$S_{COD}=a_{4}$$; $$\angle AOB=\alpha \Rightarrow$$ $$\angle AOD=180-\alpha$$

     2) $$a_{1}=\frac{1}{2}AO*OD \sin (180-\alpha )=$$$$\frac{1}{2}AO*OD \sin \alpha$$ ; $$a_{2}=\frac{1}{2}AO*OB \sin \alpha$$ , $$a_{3}=\frac{1}{2}BO*OC \sin \alpha$$ ; $$a_{4}=\frac{1}{2}CO*OD \sin \alpha$$ . Тогда : $$a_{1}*a_{3}=\frac{1}{4}AO*OD*BO*OC* \sin^{2}\alpha=a_{2}*a_{4}(1)$$

     3) т.к. арифметическая прогрессия ( пусть ее разность d ) , то: $$a_{2}=a_{1}+d$$; $$a_{3}=a_{1}+2d$$; $$a_{4}=a_{1}+3d$$. С учетом (1): $$a_{1}(a_{1}+2d)=(a_{1}+d))(a_{1}+3d)\Leftrightarrow$$ $$a_{1}^{2}+2a_{1}d=a_{1}^{2}+4a_{1}d+3d^{2}\Leftrightarrow$$ $$2a_{1}d+3d^{2}=0\Leftrightarrow$$ $$d(2a_{1}+3)=0$$. $$2a_{1}+3>0$$ ,т.к. $$a_{1}$$ - площадь , тогда d=0, но тогда $$a_{1}=a_{2}=a_{3}=a_{4}(2)$$

     4)С учетом (2) : $$AO *OD=AO*BO$$, $$(a_{1}=a_{2})\Rightarrow$$ $$BO=OD$$; $$AO*OB=BO*OC$$$$(a_{2}=a_{3})\Rightarrow$$$$AO=OD$$. Тогда ABCD-параллелограмм

     5) $$BO=OD=\frac{\sqrt{7}}{2}$$; $$AO=OC=2$$ Из $$\Delta AOB$$ : Пусть AB=x, тогда по теореме косинусов :

$$\frac{7}{4}=x^{2}+4-2x*2\frac{\sqrt{3}}{2}\Leftrightarrow$$ $$x^{2}-2x\sqrt{3}+\frac{9}{4}=0\Leftrightarrow$$ $$D=12-9=3$$

$$x_{1}=\frac{2\sqrt{3}+\sqrt{3}}{2}=\frac{3\sqrt{3}}{2}$$

$$x_{2}=\frac{2\sqrt{3}-\sqrt{3}}{2}=\frac{\sqrt{3}}{2}$$

     6) при $$AB=\frac{3\sqrt{3}}{2}=\frac{\sqrt{27}}{2}$$ из $$\Delta ABC:$$ $$BC=\sqrt{\frac{9*3}{4}+16-2*4*\frac{3\sqrt{3}}{2}*\frac{\sqrt{3}}{2}}=$$$$\sqrt{\frac{27}{4}+16-18}=$$$$\sqrt{\frac{27}{4}-2}=\frac{\sqrt{19}}{2}<AB\Rightarrow$$ не подходит по условию , что AB –меньшая.

Тогда:  $$S_{ABO}=\frac{1}{2}*AB*BO\sin BAO=$$$$\frac{1}{2}*\frac{\sqrt{3}}{2}*2*\frac{1}{2}=$$$$\frac{\sqrt{3}}{4}$$ и $$S_{ABCD}=\sqrt{3}$$

Задание 6957

Продолжение сторон AD и BC выпуклого четырехугольника ABCD пересекаются в точке M, а продолжения сторон AB и CD – в точке O. Отрезок MO перпендикулярен биссектрисе угла AOD. Найдите отношение площадей треугольника AOD и четырехугольника ABCD, если АО = 12, ОD = 8, CD = 2.

Ответ: $$\frac{2}{1}$$ или $$\frac{14}{11}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     A) 1) Пусть C между O и D. Проведем через $$A n\left | \right |OM$$: $$P=CD\cap n$$; $$Q=OL\cap n$$; $$T=CB\cap n$$

        2) $$OQ\perp OM$$; $$OM\left | \right |AP\Rightarrow$$ $$OQ\perp AP\Rightarrow$$ OQ - высота и биссектриса $$\Rightarrow$$ $$\Delta AOP$$ – равнобедренны $$\Rightarrow$$ $$OP=OA=12$$; $$PD=OP-PD=12-8=4$$

        3) $$\Delta MDO\sim \Delta ADP$$: $$\frac{OM}{AP}=\frac{OD}{DP}\Rightarrow$$ $$OM=\frac{AP*OD}{DP}=2 AP$$; $$\Delta PCT\sim OCM$$: $$\frac{OM}{PT}=\frac{OC}{PC}\Rightarrow$$ $$PT=\frac{MO*PC}{OC}=MO=2 AP$$$$\Rightarrow$$ $$AT=AP$$; $$OM=2 AT$$; $$\Delta MBD\sim \Delta TBA$$: $$\frac{OB}{AB}=\frac{MO}{AT}=\frac{2}{1}$$

        4) Пусть $$S_{AOD}=S\Rightarrow$$ $$S_{BOC}=\frac{OB}{AO}*\frac{OC}{OD}S=$$$$\frac{2}{3}*\frac{6}{8}S=\frac{S}{2}$$$$\Rightarrow$$ $$S_{ABCD}=S_{AOD}-S_{BOC}=\frac{S}{2}\Rightarrow$$ $$\frac{S_{AOD}}{S_{ABCD}}=\frac{S}{\frac{S}{2}}=\frac{2}{1}$$

     Б) 1) Пусть D располагается между O и C. Проведем через $$B n\left | \right |OM$$: $$OL\cap n=Q$$; $$OC\cap n=P$$; $$OA\cap n=T$$

        2) Аналогично (A) $$\Delta OBP$$ – равнобедренный. Пусть $$AB=x\Rightarrow$$ $$OB=12+x$$ ; $$OP=PB=12+x=8+2+CP\Rightarrow$$ $$CP=x+2$$

        3) $$\Delta BCP\sim \Delta COM$$: $$\frac{PB}{OM} =\frac{CP}{OC}\Rightarrow$$ $$BP=\frac{OM(x+2)}{10}$$; $$\Delta TPC\sim \Delta ODM$$: $$\frac{TP}{OM}=\frac{DP}{OD}\Rightarrow$$ $$TP=\frac{OM(x+4)}{8}$$; $$TB=TP-BP=OM(\frac{x+12}{40})$$; $$\Delta TBA\sim \Delta AOM$$: $$\frac{TB}{OM}=\frac{AB}{AO}\Rightarrow$$ $$\frac{x+12}{40}=\frac{x}{12}\Leftrightarrow$$ $$40x=12(x+12)\Leftrightarrow$$ $$x=\frac{36}{7}\Rightarrow$$ $$OB=12+\frac{36}{7}=\frac{120}{7}$$

        4) Пусть $$S_{BOC}=S\Rightarrow$$ $$S_{AOD}=\frac{AO}{OB}*\frac{OD}{OC}S=$$$$\frac{12}{120}*\frac{8}{10}S=$$$$\frac{56}{100}S\Rightarrow$$ $$S_{ABCD}=S-\frac{56}{100}S=\frac{44}{100}S$$$$\Rightarrow$$ $$\frac{S_{AOD}}{S_{ABCD}}=$$$$\frac{56}{100}S:\frac{44}{100}S=\frac{14}{11}$$

Задание 7005

В треугольнике АВС площадью 90 см2 биссектриса AD делит сторону ВС на отрезки BD и CD, причём BD : CD = 2 : 3. Отрезок BL пересекает биссектрису AD в точке Е и делит сторону АС на отрезки AL и CL такие, что AL : CL = 1 : 2. Найдите площадь четырёхугольника EDCL.

Ответ: 44
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Пусть $$AL=y\Rightarrow$$ $$LC=2y; AC=3y$$

     1) $$S)_{ABC}=90$$; $$\frac{S_{ABD}}{S_{ADC}}=\frac{BD}{DC}=\frac{2}{3}\Rightarrow$$ $$S_{ABD}=\frac{2}{5}S_{ABC}=36$$. $$S_{ADC}=\frac{3}{5}S_{ABC}=54$$

     2) Пусть $$DK\left | \right |EL \Rightarrow$$ по т. Фалеса : $$\frac{CK}{KL}=\frac{CD}{DB}=\frac{3}{2}\Rightarrow$$$$CK=\frac{3}{5}CL=\frac{6}{5}y$$. $$KL=\frac{2}{5}CL=\frac{4}{5}y$$

     3) По т. Фалеса для $$\angle DAC$$: $$\frac{AE}{ED}=\frac{AL}{LK}=$$$$\frac{y}{0,8 y}=\frac{5}{4}\Rightarrow$$ $$AE=\frac{5}{9}AD$$

     4) $$\frac{S_{AEL}}{S_{ADC}}=\frac{AE*AL}{AD*AC}=\frac{5}{27}\Rightarrow$$ $$S_{DELC}=\frac{22}{27}S_{ADC}=44$$

Задание 7091

Дан треугольник АВС, на стороне АС взята точка Е так, что АЕ : ЕС = 2: 3 , а на стороне АВ взята точка D так, что АD : DB = 1: 4 . Проведены отрезки СD и ВЕ. Найдите отношение площади получившегося четырехугольника к площади данного треугольника.

Ответ: $$\frac{14}{115}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

      1) $$BE\cap CD=H$$ ; Пусть $$AE=2x$$ ; $$AD=y \Rightarrow$$ $$DB=4y; EC=3x$$

      2) Построим $$DK\left | \right |BE (K=DK\cap AC)\Rightarrow$$ по т Фалеса : $$\frac{AD}{DB}=\frac{AK}{KE}\Rightarrow$$ $$AK=0,4 x; KE=1,6 x$$.

      3) Пусть $$S_{ABC}=S$$; $$S_{ADC}=\frac{AD}{AB}S=\frac{S}{5}$$; $$S_{ADK}=\frac{AK}{AC}S_{ADC}=$$$$\frac{2}{25}*\frac{S}{5}=\frac{2S}{125};$$

     4) $$HE\left | \right | DK \Rightarrow$$ $$\Delta CHE\sim \Delta CDK$$; $$\frac{S_{CHE}}{S_{CDK}}=(\frac{CE}{CK})^{2}=$$$$(\frac{15}{23})^{2}=\frac{225}{529}\Rightarrow$$ $$S_{DHEK}=\frac{529-225}{529}*S_{CDK}$$; $$S_{CDK}=S_{ADC}-S_{ADK}=\frac{23S}{125}$$; $$S_{DHEK}=\frac{304}{529}*\frac{23S}{125}=\frac{304 S}{23*125}$$; $$S_{ADHE}=\frac{2S}{125}+\frac{304 S}{23*125}=\frac{350 S}{23*125}=\frac{14 S}{115}\Rightarrow$$ $$\frac{S_{ADHE}}{S_{ABC}}=\frac{14}{115}$$

Задание 7138

На плоскости дан прямой угол. Окружность с центром внутри этого угла касается одной стороны угла, пересекает другую в точках А и В, а биссектрису угла – в точках С и D. Найдите радиус окружности, если $$AB=\sqrt{6}$$ см, $$CD=\sqrt{7}$$ см.

Ответ: $$\sqrt{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть O – центр окружности,K-вершина, M-точка касания, $$OM\perp KM$$; $$OR\perp AB$$; x –радиус . $$RA=\frac{AB}{2}=\frac{\sqrt{6}}{2}$$; $$HC=\frac{DC}{2}=\frac{\sqrt{7}}{2}$$.

     2) из $$\Delta ORA$$: $$OR=\sqrt{OA^{2}-RA^{2}}=\sqrt{x^{2}-\frac{3}{2}}$$

     3) $$\Delta OHN \sim \Delta NMK$$ (прямоугольные, $$\angle ONH=\angle MNK$$)$$\Rightarrow$$ $$OH=HN=\frac{ON}{\sqrt{2}}=$$$$\frac{OM-NM}{\sqrt{2}}=\frac{x-NM}{\sqrt{2}}=$$$$\frac{x-MK}{\sqrt{2}}=\frac{x-OR}{\sqrt{2}}=$$$$\frac{x-\sqrt{x^{2}-\frac{3}{2}}}{\sqrt{2}}$$

     4) из $$\Delta OHC$$: $$OC^{2}=OH^{2}+HC^{2}\Leftrightarrow$$ $$x^{2}=(\frac{x-\sqrt{x^{2}-\frac{3}{2}}}{2})^{2}+\frac{7}{4}\Leftrightarrow$$ $$x^{2} =\frac{1}{2} (x^{2}+x^{2}-\frac{3}{2}-2x\sqrt{x^{2}-\frac{3}{2}}) +\frac{7}{4} \Leftrightarrow$$ $$2x^{2}=2x^{2}-\frac{3}{2}+\frac{7}{2}-2x\sqrt{x^{2}-\frac{3}{2}}\Leftrightarrow$$ $$x\sqrt{x^{2}-\frac{3}{2}}=1\Leftrightarrow$$ $$x^{4}-\frac{3}{2}x^{2}-1=0\Leftrightarrow$$ $$\left[\begin{matrix}x^{2}=2 & & \\x^{2}=-\frac{1}{2} & &\end{matrix}\right.\Leftrightarrow$$ $$x=\sqrt{2}$$

Задание 7165

Одна из боковых сторон трапеции перпендикулярна основаниям и равна 4. На этой стороне как на диаметре построена окружность, которая делит другую боковую сторону на три отрезка. Отношение длин этих отрезков равно 1 : 2 : 2 (считая от верхнего основания). Найдите площадь трапеции.

Ответ: $$\frac{4(2+3\sqrt{6})}{5}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть $$ND=MN=2x\Rightarrow$$ $$CM=x$$; $$AB=4$$. Пусть $$CH\left | \right |AB\Rightarrow$$ $$CH=4$$, $$BC=AH=y$$. По т. Пифагора из $$\Delta CDH$$: $$HD=\sqrt{CD^{2}-CH^{2}}=\sqrt{25x^{2}-16}$$

      2) По свойству касательной и секущей : $$\left\{\begin{matrix}BC^{2}=CM*CN\\AD^{2}=DN*DM\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}y^{2}=x*3x\\(y+\sqrt{25x^{2}-16})^{2}=2x*4x\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}y=x\sqrt{3}\\y^{2}+25x^{2}-16+2y\sqrt{25x^{2}-16}=8x^{2}(1)\end{matrix}\right.$$

   Рассмотрим (1): $$25x^{2}+3x^{2}-8x^{2}+2x\sqrt{3}*\sqrt{25x^{2}-16}=16\Leftrightarrow$$$$2 x\sqrt{3}\sqrt{25x^{2}-16}=16-20x^{2}\Leftrightarrow$$$$x\sqrt{3}\sqrt{25x^{2}-16}=8-10x^{2}\Leftrightarrow$$$$\left\{\begin{matrix}3x^{2}(15x^{2}-16)=(8-10x^{2})^{2}(2)\\8-10 x^{2}\geq 0(3)\end{matrix}\right.$$

   Рассмотрим (2): $$75x^{4}-8x^{2}=64-160x^{2}+100x^{4}\Leftrightarrow$$ $$25x^{2}-112x^{2}+64=0\Rightarrow$$ $$D=6144=32^{2}*6$$

   Тогда: $$\left\{\begin{matrix}x_{1}^{2}=\frac{112+32\sqrt{6}}{50} \in (3)\\x_{2}^{2}=\frac{112-32\sqrt{6}}{50}=\frac{56-16\sqrt{6}}{25}=(\frac{4\sqrt{3}-2\sqrt{2}}{5})^{2}\end{matrix}\right.$$

     3) Площадь $$S=\frac{BC+AD}{2}*CH=$$$$\frac{y+y+\sqrt{25x^{2}-16}}{2}*4=$$$$2(2y+\sqrt{25x^{2}-16})$$

   1) $$\sqrt{25x^{2}-16}=\sqrt{25*\frac{56-16\sqrt{6}}{25}-16}=$$$$\sqrt{40-16\sqrt{6}}=\sqrt{(2\sqrt{6}-4)^{2}}=$$$$\left | 2\sqrt{6}-4 \right |=2\sqrt{6}-4$$

   2) $$2y=2*x\sqrt{3}=2\sqrt{3}*\left | \frac{4\sqrt{3}-2\sqrt{2}}{5} \right |=$$$$2\sqrt{3}*\frac{4\sqrt{3}-2\sqrt{2}}{5}=$$$$\frac{24-4\sqrt{6}}{5}$$

   $$S=2(\frac{24-4\sqrt{6}}{5}+2\sqrt{6}-4)=$$$$\frac{2}{5}*(24-4\sqrt{6}+10\sqrt{6}-20)=$$$$\frac{2}{5}(6\sqrt{6}+4)=\frac{4(2+3\sqrt{6})}{5}$$

Задание 7254

В треугольнике ABC биссектрисы AD и BE пересекаются в точке О. Найдите отношение площади четырехугольника DOEC к площади треугольника ABC, если AC:AB:BC = 4:3:2.

Ответ: $$\frac{32}{105}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть $$AC=4x; AB=3x;BC=2x$$.

     2) По свойству биссектрисы $$\frac{AB}{AC}=\frac{BD}{DC}=\frac{3}{4}\Rightarrow$$ $$BD=\frac{3}{7}BC=\frac{6x}{7}$$; $$DC=\frac{4}{7}BC=\frac{8x}{7}$$. Аналогично, $$\frac{AB}{BC}=\frac{AE}{EC}=\frac{3}{2}\Rightarrow$$ $$AE=\frac{3}{5}AC=\frac{12x}{5}$$; $$EC=\frac{2}{5}AC=\frac{8x}{5}$$

     3) Пусть $$EH\left | \right |OD\Rightarrow$$ по т. Фалеса : $$\frac{AE}{EC}=\frac{DH}{HC}=\frac{3}{2}\Rightarrow$$ $$DH=\frac{3}{5} DC=\frac{24x}{35}$$$$\Rightarrow$$ $$BH=\frac{54x}{35}$$

     4)Пусть $$S_{ABCD}=S$$ $$\Rightarrow$$ при этом $$S_{BEC}=\frac{EC}{AC}S=\frac{2}{5}S$$; $$S_{BEH}=\frac{BH}{BC}S_{BEC}=$$$$\frac{54}{70}*\frac{2}{5}S=\frac{54S}{175}$$

     5) т.к. $$OD\left | \right |EH$$, то $$\frac{S_{OBD}}{S_{BEH}}=(\frac{BD}{BH})^{2}=\frac{25}{81}$$ $$\Rightarrow$$ $$\frac{2 S}{3*7}=\frac{2S}{21}\Rightarrow$$ $$S_{DOEC}=S_{BEC}-S_{OBD}=$$$$\frac{2}{5}S-\frac{2S}{21}=\frac{32 S}{105}\Rightarrow$$$$ \frac{S_{DOEC}}{S_{ABC}}=\frac{32}{105}$$

Задание 7281

Через точку О пересечения диагоналей трапеции проведена прямая, параллельная основанию. Найдите длину отрезка этой прямой между боковыми сторонами трапеции, если средняя линия трапеции равна 4/3 , а точка О делит диагональ трапеции на части, отношение которых равно 1 : 3.

Ответ: 1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) т.к. средняя линия равна $$\frac{4}{3}$$, то $$\frac{BC+AD}{2}=\frac{4}{3}\Rightarrow$$ $$BC+AD=\frac{8}{3}$$

     2) $$\Delta BOC\sim \Delta AOD$$ ($$\angle BCO=\angle OAD$$ - накрест лежащие , $$\angle BOC=\angle AOD$$ - вертикальные )$$\Rightarrow$$ $$\frac{BC}{AD}=\frac{CO}{OA}=\frac{1}{3}$$$$\Rightarrow$$ пусть $$BC=x\Rightarrow$$ $$AD=\frac{8}{3}-x$$ тогда $$\frac{x}{\frac{8}{3}-x}=\frac{1}{3}\Rightarrow$$ $$3x=\frac{8}{3}-x\Rightarrow$$ $$x=\frac{2}{3}$$$$\Rightarrow$$ $$AD=2$$

     3) $$\Delta BOM \sim \Delta ABD$$ ($$MO\left | \right |AD$$) $$\Rightarrow$$ $$\frac{MO}{AD}=\frac{BO}{BD}=$$$$\frac{1}{4}\Rightarrow$$ $$MO=\frac{1}{4}*2=\frac{1}{2}$$. Аналогично, $$ON=\frac{1}{4}AD=\frac{1}{2}$$$$\Rightarrow$$ $$MN=\frac{1}{2}+\frac{1}{2}=1$$

Задание 7313

Четырехугольник ABCD вписан в окружность с центром О, $$\angle BOA=\angle COD=60^{\circ}$$. Перпендикуляр ВК, опущенный из вершины В на сторону АD, равен 6; ВС в три раза меньше АD. Найдите площадь треугольника CОD.

Ответ: $$\frac{63\sqrt{3}}{4}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7397

Внутри параллелограмма ABCD взята точка Р так, что треугольник АРD равносторонний. Известно, что расстояние от точки Р до прямых АВ, ВС и CD равны соответственно 10, 3 и 6. Найдите периметр параллелограмма.

Ответ: $$\frac{77\sqrt{3}}{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7499

Диагонали ВD и АС выпуклого четырехугольника АВСD перпендикулярны, пересекаются в точке М, АМ = 4/3, МС = 3. Точка N лежит на стороне АВ, причем AN : NB = 1 : 3. Треугольник DNC – равносторонний. Найдите его площадь.

Ответ: $$\frac{13\sqrt{3}}{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7546

Четырехугольник АВСD, описанный около некоторой окружности, делится диагональю АС на треугольники АВС и АСD с радиусами вписанных окружностей 1 и $$\frac{3}{\sqrt{15}}$$ соответственно. Найдите стороны четырехугольника и диагональ ВD, если площади треугольников АВС и АСD равны 6 и $$\sqrt{15}$$ соответственно.

Ответ: $$5;3;2;4;\sqrt{13}+3\sqrt{15}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7593

Середина M стороны AD выпуклого четырёхугольника ABCD равноудалена от всех его вершин. Найдите АD, если BC =12, а углы B и C четырёхугольника равны соответственно 115o и 95o

Ответ: $$8\sqrt{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7620

Окружность касается сторон АС и ВС треугольника АВС в точках А и В соответственно. На дуге этой окружности, лежащей вне треугольника, расположена точка К так, что расстояния от неё до продолжений сторон АС и ВС равны 39 и 156 соответственно. Найдите расстояние от точки К до прямой АВ.

Ответ: 78
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7669

На диагонали BD прямоугольной трапеции ABCD ($$\angle D=90$$, BC॥ AD) взята точка Q так, что BQ : QD = 1 : 3. Окружность с центром в точке Q касается прямой AD и пересекает прямую BC в точках P и M. Найдите длину стороны AB, если BC = 9, AD = 8, PM = 4.

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7716

В треугольнике АВС на сторонах АВ и АС взяты точки M и N соответственно так, что AM : MB = 3 : 2 и AN : NC = 4 : 5. В каком отношении прямая, проходящая через точку М параллельно ВС, делит отрезок BN?

Ответ: 18:7
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7763

В четырехугольнике АВСD диагонали АС и ВD пересекаются в точке К. Точки L и M являются, соответственно серединами сторон ВС и АD. Отрезок LM содержит точку К. Четырехугольник АВСD таков, что в него можно вписать окружность. Найдите радиус этой окружности, если АВ=3, АС=$$\sqrt{13}$$ , LК : КM=1 : 3.

Ответ: 1,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7813

Длины боковых сторон AB и CD трапеции ABCD равны соответственно 8 см и 10 см, а длина основания BC равна 2 см. Биссектриса угла ADC проходит через середину стороны AB. Найти площадь трапеции.

Ответ: 40
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7859

На катете ML прямоугольного треугольника KLM как на диаметре построена окружность. Она пересекает сторону KL в точке P. На стороне KM взята точка R так, что отрезок LR пересекает окружность в точке Q, причём отрезки QP и ML параллельны, KR=2RM и $$ML=8\sqrt{3}$$ . Найдите MQ

Ответ: $$4\sqrt{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть $$MR=x$$ $$\Rightarrow$$ $$RK=2x$$

1) $$MP\perp LK$$ ($$\angle LDM$$ - центральный и опирается на диаметр) $$\Rightarrow$$ $$\bigtriangleup LPM\sim\bigtriangleup LMK$$

2) Аналогично $$\bigtriangleup LQM\sim\bigtriangleup LRM$$

3) $$LM\parallel PQ$$ $$\Rightarrow$$ $$LPQM$$ - трапеция вписанная $$\Rightarrow$$ $$\angle L+\angle Q=180^{\circ}$$; но $$\angle P+\angle Q=180^{\circ}$$ $$\Rightarrow$$ $$\angle P=\angle Q$$ $$\Rightarrow$$ трапеция равнобедренная $$\Rightarrow$$ $$LP=MQ$$ $$\Rightarrow$$ $$\bigtriangleup LPM=\bigtriangleup LMQ$$ $$\Rightarrow$$ $$\bigtriangleup LRM\sim\bigtriangleup LKM$$

4) из подобия : $$\frac{LM}{MK}=\frac{MR}{LM}$$ $$\Rightarrow$$ $$\frac{8\sqrt{3}}{3x}=\frac{x}{8\sqrt{3}}$$ $$\Rightarrow$$ $$3x^{2}=64\cdot3$$ $$\Rightarrow$$ $$x^{2}=64$$ $$\Rightarrow$$ $$x=8$$ $$\Rightarrow$$ $$LR=\sqrt{(8\sqrt{3})^{2}+8^{2}}=16$$ $$\Rightarrow$$ $$MQ=\frac{8\sqrt{3}\cdot8}{16}=4\sqrt{3}$$

Задание 7909

В трапецию, у которой меньшее основание равно 5, вписана окружность. Одна из боковых сторон трапеции делится точкой касания на отрезки 9 и 4, считая от большего основания. Найдите площадь трапеции.

Ответ: 300
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 8427

Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 12, тангенс угла ABC равен 2,4. Найдите радиус вписанной окружности треугольника ABC .

Ответ: 13
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$\tan ABC=\frac{AC}{BC}=2,4=\frac{12}{5}$$. Пусть $$AC=12x$$ $$\Rightarrow$$ $$AB=5x$$. По т. Пифагора: $$AB=\sqrt{AC^{2}+CB^{2}}=13x$$

2) $$\bigtriangleup CPA\sim\bigtriangleup ABC$$ (прямоугольные с общим сотрым углом) $$\Rightarrow$$ $$\frac{O_{1}L}{OK}=\frac{AC}{AB}=\frac{12x}{13x}=\frac{12}{13}$$ $$\Rightarrow$$ $$OK=\frac{O_{1}L\cdot13}{12}=\frac{12\cdot13}{12}=13$$

Задание 8479

В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C, D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD , если AD=6, BC=5 .

Ответ: $$\sqrt{30}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 8531

В равнобедренной трапеции ABCD боковые стороны равны меньшему основанию BC. К диагоналям трапеции провели перпендикуляры BH и CE. Найдите площадь четырёхугольника BCEH, если площадь трапеции равна 36.

Ответ: 9
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 8583

В треугольнике ABC биссектриса угла A делит высоту, проведённую из вершины B, в отношении 41:40, считая от точки B. Найдите радиус окружности, описанной около треугольника ABC , если BC=18.

Ответ: 41
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 8635

Точки M и N лежат на стороне AC треугольника ABC на расстоянии соответственно 18 и 22 от вершины A . Найдите радиус окружности, проходящей через точки M , N и касающейся луча AB , если $$\cos \angle BAC=\frac{\sqrt{11}}{6}$$ .

Ответ: 10,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8830

В трапеции ABCD основания AD и BC равны соответственно 34 и 14, а сумма углов при основании AD равна 90. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=12.
Ответ: 14,4
Скрыть

  1. Продолжим стороны AB и CD до их пересечения в точке E. Угол AEC равен 90°, поскольку сумма углов EAD и EDA равна 90°. Рассмотрим треугольники AED и BEC, они прямоугольные, углы ECB и EDA равны как соответственные углы при параллельных прямых, следовательно, эти треугольники подобны, откуда: $$\frac{AE}{BE}=\frac{AB+BE}{BE}=\frac{AD}{BC}$$
  2. Найдём BE: $$\frac{24+BE}{BE}=\frac{34}{2}\Leftrightarrow$$$$BE+24=17BE\Leftrightarrow$$$$BE=1,5$$
  3. Пусть окружность касается прямой CD в точке F, причём точка F может лежать или на стороне CD или на её продолжении. Отрезок OF перпендикулярен прямой CD, как радиус, проведённый в точку касания, OA, OB и OF — радиусы.
  4. Треугольник AOB — равнобедренный, OH — высота, следовательно, OH является медианой и биссектрисой. Четырехугольник OHEF — прямоугольник, потому что все его углы прямые. Откуда:
    $$R=OF=HE=HB+BE=12+1,5=13,5$$
 

Задание 8857

В трапеции ABCD основания AD и BC равны соответственно 34 и 2, а сумма углов при основании AD равна 90. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=24.

Ответ: 13,5
 

Задание 8949

На стороне BC остроугольного треугольника ABC ($$AB\neq AC$$) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=80, MD=64, Н — точка пересечения высот треугольника ABC. Найдите AH.

Ответ: 28,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8975

Стороны AC, AB, BC треугольника ABC равны $$2\sqrt{5}$$, $$\sqrt{13}$$, 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает отрезок AB в точке, отличной от B. Известно, что треугольник с вершинами A, K, C подобен исходному. Найдите косинус угла AKC, если известно, что $$\angle KAC=90$$.

Ответ: $$\frac{2}{\sqrt{5}}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9002

На стороне BC остроугольного треугольника ABC ($$AB\neq AC$$) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=90, MD=69, H-точка пересечения высот треугольника ABC. Найдите AH.

Ответ: 37,1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9029

В четырёхугольнике ABCD диагонали пересекаются в точке O под углом $$\alpha$$. Точка F принадлежит отрезку AC. Известно, что BO=10, DO=14, AC=18. Найдите AF, если площадь треугольника FBC в четыре раза меньше площади четырёхугольника ABCD.

Ответ: 7,2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9068

Середина М стороны AD выпуклого четырёхугольника ABCD равноудалена от всех его вершин. Найдите AD, если ВС=3, а углы В и С четырёхугольника равны соответственно 94° и 131°.

Ответ: $$3\sqrt{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9090

В четырёхугольнике ABCD диагонали пересекаются в точке O под углом $$\alpha$$. Точка F принадлежит отрезку AC. Известно, что BO=19, DO=16, AC=24. Найдите AF, если площадь треугольника FCB в три раза меньше площади четырёхугольника ABCD.

Ответ: 6,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9197

Углы при одном из оснований трапеции равны 53° и 37°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 6 и 2. Найдите основания трапеции.

Ответ: 8;4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9223

Углы при одном из оснований трапеции равны 80° и 10°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 20 и 17. Найдите основания трапеции

Ответ: 37;3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9269

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 84. Найдите стороны треугольника ABC .

Ответ: $$21\sqrt{13};63\sqrt{5};42\sqrt{13}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9290

Окружности радиусов 45 и 90 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D – на второй окружности. При этом AC и BD – общие касательные окружностей. Найдите расстояние между прямыми AB и CD .

Ответ: 120
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9317

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 96. Найдите стороны треугольника ABC.

Ответ: $$24\sqrt{13}; 48\sqrt{13}; 72\sqrt{5}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9417

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 12. Найдите стороны треугольника АВС.

Ответ: $$3\sqrt{13};6\sqrt{13};9\sqrt{5}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9473

Углы при одном из оснований трапеции равны 18 и 72 , а отрезки, соединяющие середины противоположных сторон трапеции, равны 15 и 4. Найдите основания трапеции.

Ответ: 9;11
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9537

Середина М стороны AD выпуклого четырёхугольника ABCD равноудалена от всех его вершин. Найдите AD, если ВС=19, а углы В и С четырёхугольника равны соответственно 95° и 115°.

Ответ: $$\frac{38\sqrt{3}}{3}$$
 

Задание 9561

В треугольнике ABC известны длины сторон AB=14, AC=98, точка О - центр окружности, описанной около треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.

Ответ: 96
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9617

Середина М стороны AD выпуклого четырёхугольника ABCD равноудалена от всех его вершин. Найдите AD, если BC=3, а углы В и С четырёхугольника равны соответственно 94° и 131°

Ответ: $$3\sqrt{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9713

Точки M и N лежат на стороне AC треугольника ABC , причём AM=36 и AN=44. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB , если $$\cos \angle BAC=\frac{\sqrt{11}}{6}$$ .

Ответ: 21,6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9739

Найдите градусную меру меньшего угла прямоугольного треугольника, если его гипотенуза равна 12, а площадь равна 18.

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9766

Середина М стороны AD выпуклого четырёхугольника ABCD равноудалена от всех его вершин. Найдите AD, если ВС=19, а углы В и С четырёхугольника равны соответственно 95° и 115°.

Ответ: $$\frac{38\sqrt{3}}{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9834

Середина M стороны AD выпуклого четырёхугольника ABCD равноудалена от всех его вершин. Найдите AD , если BC=$$10\sqrt{2}$$, а углы B и C четырёхугольника равны соответственно 112 и 113.

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9861

В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=6, ВС=5.

Ответ: $$\sqrt{30}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9926

На каждой из двух окружностей радиусами 3 и 4 лежат по три вершины ромба. Найдите длину стороны ромба.

Ответ: 4,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9980

В трапеции ABCD боковая сторона АВ перпендикулярна основанию ВС. Окружность проходит через точки С и D и касается прямой АВ в точке Е. Найдите расстояние от точки Е до прямой CD , если AD=4, ВС=2.
Ответ: $$2\sqrt{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10007

Окружности радиусов 44 и 77 касаются внешним образом. Точки А и В лежат на первой окружности, точки С и D — на второй. При этом АС и BD — общие касательные окружностей. Найдите расстояние между прямыми АВ и CD.

Ответ: 112
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 10246

Две касающиеся внешним образом в точке K окружности, радиусы которых равны 33 и 39, вписаны в угол с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC .

Ответ: 216
 

Задание 10308

В окружности через середину O хорды проведена хорда BD AC так, что дуги AB и CD равны. Докажите, что O – середина хорды AC

Ответ: ч.т.д.
 

Задание 10309

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше стороны длины AB. Найдите отношение площади четырехугольника KPCM к площади треугольника ABC .

Ответ: 9/20
 

Задание 10331

Прямая, параллельная основаниям трапеции ABCD , пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF , если AD=35 , BC=21, CF:DF=5:2.

Ответ: 31
 

Задание 10364

Диагонали четырёхугольника ABCD, вершины которого расположены на окружности, пересекаются в точке M. Известно, $$\angle ABC=72^{\circ}$$, $$\angle BCD=102^{\circ}$$ , $$\angle AMD=110^{\circ}$$. Найдите ACD .

Ответ: 52
 

Задание 10427

Медиана и биссектриса BM треугольника ABC пересекается в точке K, длина стороны AC относится к длине стороны AB как 9:7. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.

Ответ: 112/135
 

Задание 10468

Найдите площадь трапеции, диагонали которой равны 16 и 12, а средняя линия равна 10.

Ответ: 96
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

  1. Проведем из С прямую, параллельную BD до пересечения с AD в F
  2. Средняя линия равна полусумме оснований, тогда: $$AD+BC=20$$
  3. BC параллельна DF, BD параллельна CF, тогда BCFD - параллелограмм, DF=BC, AF=20. При это площадь треугольников ABC и CDF равны (одинаковая высота и основания)
  4. Тогда площадь искомой трапеции равна площади треугольника ACF. Найдем ее по формуле Герона: $$p=\frac{16+12+20}{2}=24$$; $$S=\sqrt{24\cdot 8\cdot 12\cdot 4}=96$$
 

Задание 10962

Диагонали четырёхугольника ABCD , вершины которого расположены на окружности, пересекаются в точке M . Известно, что $$\angle ABC=72{}^\circ $$, $$\angle BCD=102{}^\circ $$, $$\angle AMD=110{}^\circ $$. Найдите градусную меру угла $$ACD$$.
Ответ: 52
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Пусть $$\angle ACD=x$$. Тогда $$\cup AD=2x$$ (вписанный угол).

2) Также $$\cup ADC=144{}^\circ \left(2\angle ABC\right)\to \cup DC=144-2x\to \angle DAC=72-x$$.

3) Аналогично, $$\cup DAB=204{}^\circ \left(2\angle BCD\right)\to \cup AB=204-2x\to \angle ADB=102{}^\circ -x$$.

4) Из $$\triangle AMD:72-x+102-x+110=180\to 284-2x=180\to 2x=104{}^\circ \to x=52$$.

 

Задание 10985

В треугольнике АВС на его медиане ВМ отмечена точка К так, что $$ВК : КМ = 6 : 7$$. Прямая АК пересекает сторону ВС в точке Р. Найдите отношение площади треугольника ВКР к площади треугольника АВК.

Ответ: 3:10
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1)$$S_{ABM}=\frac{S_{ABC}}{2}=0,5S$$ (тогда BM - медиана)

2)$$\frac{S_{ABK}}{S_{AKM}}=\frac{BK}{KM}=\frac{6}{7}$$ (общая вершина) $$\to S_{ABK}=\frac{6}{13}S_{ABM}=\frac{3S}{13}.$$

3) Пусть $$ML\parallel KP\to \frac{BP}{PL}=\frac{BK}{KM}=\frac{6}{7}$$. Но $$\frac{PL}{LC}=\frac{AM}{MC}=\frac{1}{1}\to BP:PL:LC=6:7:7$$. Тогда $$\frac{S_{ABP}}{S_{ABC}}=\frac{BP}{BC}=\frac{6}{20}\to S_{ABP}=\frac{3}{10}S;$$ $$S_{BKP}=\frac{3S}{10}-\frac{3S}{13}=\frac{(39-30)S}{130}=\frac{9S}{130}\to \frac{S_{BKP}}{S_{ABK}}=\frac{9S}{130}\cdot \frac{13}{3S}=\frac{3}{10}$$

 

Задание 11047

В треугольнике ABC на его медиане BM отмечена точка K так, что BK:KM=4:9. Прямая AK пересекает сторону BC в точке P. Найдите отношение площади треугольника AKM к площади четырехугольника KPCM.

Ответ: $$\frac{11}{15}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Пусть $$S_{ABC}=S\to S_{ABM}=S_{BMC}=\frac{S}{2}.$$

2) $$\frac{S_{ABK}}{S_{AKM}}=\frac{BK}{KM}=\frac{4}{9}\to S_{AKM}=\frac{9}{13}S_{ABM}\frac{9}{13}\cdot \frac{S}{2}=\frac{9S}{26}.$$

3) Пусть $$ML\parallel AP\to ML$$ - средняя линия $$\triangle APL$$ и $$PL=LC.$$ Но $$KP\parallel ML\to \frac{BK}{KM}=\frac{BP}{PL}=\frac{4}{9},$$ тогда $$\frac{BP}{PC}=\frac{4}{18}.$$

4) $$\frac{S_{APC}}{S_{ABC}}=\frac{PC}{BC}=\frac{18}{22}\to S_{APC}=\frac{9}{11}S\to S_{KPOM}=S_{APC}-S_{AKM}=\frac{9S}{11}-\frac{9S}{26}=$$ $$=\frac{9S(26-11)}{26\cdot 11}=\frac{15\cdot 9S}{26\cdot 11}\to \frac{S_{AKM}}{S_{KPCM}}=\frac{9}{26}\cdot \frac{26\cdot 11}{15\cdot 9}=\frac{11}{15}.$$

 

Задание 11069

Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение для диагоналей параллелограмма равно 54.

Ответ: $$\frac{108}{3025}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11173

Биссектриса СМ треугольника АВС делит сторону АВ на отрезки АМ = 8 и МВ = 13. Касательная к окружности, описанной около треугольника АВС, проходит через точку С и пересекает прямую АВ в точке D. Найдите СD.
Ответ: 20,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11195

В параллелограмме ABCD проведена диагональ АС. Точка О является центром окружности, вписанной в треугольник АВС. Расстояния от точки О до точки А и прямых AD и АС соответственно равны 25, 15 и 7. Найдите площадь параллелограмма ABCD.

Ответ: 924
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11217

В параллелограмме ABCD проведена диагональ АС. Точка О является центром окружности, вписанной в треугольник АВС. Расстояния от точки О до точки А и прямых AD и АС соответственно равны 25, 13 и 7. Найдите площадь параллелограмма ABCD.

Ответ: 1120
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11238

Биссектриса СМ треугольника АВС делит сторону АВ на отрезки AM = 4 и МВ = 9. Касательная к окружности, описанной около треугольника АВС, проходит через точку С и пересекает прямую АВ в точке D. Найдите CD.

Ответ: 7,2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11261

В трапеции проведён отрезок, параллельный основаниям и делящий её на две трапеции одинаковой площади. Найдите длину этого отрезка, если основания трапеции равны $$24\sqrt{2}$$ и $$7\sqrt{2}$$.

Ответ: 25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11303

В трапеции ABCD основания AD и ВС равны соответственно 34 и 14, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки А и В и касающейся прямой CD, если АВ=12.

Ответ: 14,4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11324

В трапеции ABCD основания AD и ВС равны соответственно 34 и 2, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки А и В и касающейся прямой CD, если АВ=24.

Ответ: 13,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11360

На стороне ВС остроугольного треугольника АВС ($$AB\neq AC$$) как на диаметре построена полуокружность, пересекающая высоту AD в точке М, AD=80, MD=64, Н — точка пересечения высот треугольника АВС, Найдите АН.

Ответ: 28,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11403

На стороне ВС остроугольного треугольника АВС ($$AB\neq AC$$) как на диаметре построена полуокружность, пересекающая высоту AD в точке М, AD=90, MD=69, Н — точка пересечения высот треугольника АВС. Найдите АН.

Ответ: 37,1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11446

В четырёхугольнике ABCD диагонали пересекаются в точке О под углом $$\alpha$$. Точка F принадлежит отрезку АС. Известно, что ВО=10, DO=14, АС=18. Найдите AF, если площадь треугольника FBC в четыре раза меньше площади четырёхугольника ABCD.

Ответ: 7,2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11494

В четырёхугольнике ABCD диагонали пересекаются в точке О под углом $$\alpha$$. Точка F принадлежит отрезку АС. Известно, что ВО=19, DO=16, АС=24. Найдите AF, если площадь треугольника FCD в три раза меньше площади четырёхугольника ABCD.

Ответ: 6,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11518

В прямоугольном треугольнике ABC катет AC равен 8, а катет BC=15. Найдите диаметр окружности, которая проходит через концы гипотенузы и касается прямой BC.

Ответ: 36,125
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11541

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 64. Найдите периметр треугольника ABC.

Ответ: $$48(\sqrt{13}+\sqrt{5})$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11562

Углы при одном из оснований трапеции равны 53° и 37°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 6 и 2. Найдите основания трапеции.

Ответ: 8;4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11584

Углы при одном из оснований трапеции равны 80° и 10°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 20 и 17. Найдите основания трапеции.

Ответ: 37; 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11606

Найдите градусную меру меньшего угла прямоугольного треугольника, если гипотенуза равна 20, а площадь равна $$50\sqrt{2}$$.

Ответ: 22,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11629

Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и к основания касается AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.

Ответ: $$\frac{10}{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11648

В остроугольном треугольнике ABC угол B равен 60o. Докажите, что точки A, C, центр описанной окружности треугольника ABC и точка пересечения высот треугольника ABC лежат на одной окружности.

Ответ: ч.т.д.
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11649

В трапеции ABCD основание AD вдвое больше основания BC и вдвое больше боковой стороны CD. Угол ADC равен 60o, сторона AB равна 6. Найдите площадь трапеции.

Ответ: $$27\sqrt{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11670

В треугольнике АВС биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 96. Найдите стороны треугольника АВС.

Ответ: $$24\sqrt{13}; 48\sqrt{13}; 72\sqrt{5}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11795

В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ=14, SQ=4.

Ответ: 45
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11816

В треугольнике АВС известны длины сторон АВ=28, АС=56 , точка О — центр окружности, описанной около треугольника АВС. Прямая BD, перпендикулярная прямой АО, пересекает сторону АС в точке D. Найдите CD.

Ответ: 42
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11838

В треугольнике АВС известны длины сторон АВ=14, АС=98, точка О — центр окружности, описанной около треугольника АВС. Прямая BD, перпендикулярная прямой АО, пересекает сторону АС в точке D. Найдите CD.

Ответ: 96
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11880

Середина М стороны AD выпуклого четырёхугольника ABCD равноудалена от всех его вершин. Найдите AD, если ВС=3, а углы В и С четырёхугольника равны соответственно 94° и 131°.

Ответ: $$3\sqrt{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11902

Середина М стороны AD выпуклого четырёхугольника ABCD равноудалена от всех его вершин. Найдите AD, если ВС=19, а углы В и С четырёхугольника равны соответственно 95° и 115°.

Ответ: $$\frac{38\sqrt{3}}{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11928

В трапеции ABCD боковая сторона АВ перпендикулярна основанию ВС. Окружность проходит через точки С и D и касается прямой АВ в точке Е. Найдите расстояние от точки Е до прямой CD, если AD=6, ВС=5.

Ответ: $$\sqrt{30}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11949

В трапеции ABCD боковая сторона АВ перпендикулярна основанию ВС. Окружность проходит через точки С и D и касается прямой АВ в точке Е. Найдите расстояние от точки Е до прямой CD, если AD=4, ВС=2.

Ответ: $$2\sqrt{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11983

Точки М и N лежат на стороне АС треугольника АВС на расстояниях соответственно 9 и 32 от вершины А. Найдите радиус окружности, проходящей через точки М и N и касающейся луча АВ, если $$cos\angle BAC=\frac{2\sqrt{2}}{3}$$

Ответ: 13,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12004

Точки М и N лежат на стороне АС треугольника АВС на расстояниях соответственно 12 и 45 от вершины А. Найдите радиус окружности, проходящей через точки М и N и касающейся луча АВ, если $$cos\angle BAC=\frac{\sqrt{15}}{4}$$

Ответ: 24
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12025

Биссектрисы углов А и В параллелограмма ABCD пересекаются в точке К. Найдите площадь параллелограмма, если ВС=7, а расстояние от точки К до стороны АВ равно 4.

Ответ: 56
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12046

Биссектрисы углов А и В параллелограмма ABCD пересекаются в точке К. Найдите площадь параллелограмма, если ВС=2, а расстояние от точки К до стороны АВ равно 8.

Ответ: 32
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12067

Медиана ВМ треугольника АВС является диаметром окружности, проходящей через середину отрезка ВС. Найдите длину стороны АС, если радиус окружности, описанной около треугольника АВС, равен 4,8.

Ответ: 9,6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 12088

Медиана ВМ треугольника АВС является диаметром окружности, проходящей через середину отрезка ВС. Найдите длину стороны АС, если радиус окружности, описанной около треугольника АВС, равен 11.

Ответ: 22
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12109

Боковые стороны АВ и CD трапеции ABCD равны соответственно 24 и 25, а основание ВС равно 9. Биссектриса угла ADC проходит через середину стороны АВ. Найдите площадь трапеции.

Ответ: 300
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12130

Боковые стороны АВ и CD трапеции ABCD равны соответственно 12 и 13, а основание ВС равно 4. Биссектриса угла ADC проходит через середину стороны АВ. Найдите площадь трапеции.

Ответ: 78
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12151

Четырёхугольник ABCD со сторонами $$АВ\ =\ 11$$ и $$CD\ =\ 41$$ вписан в окружность. Диагонали АС и BD пересекаются в точке К, причём $$\angle AKB\ =\ 60{}^\circ .$$ Найдите радиус окружности, описанной около этого четырёхугольника.

Ответ: $$\sqrt{751}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12172

Четырёхугольник ABCD со сторонами АВ=12 и CD=30 вписан в окружность. Диагонали АС и BD пересекаются в точке К, причём $$\angle AKB = 60°.$$ Найдите радиус окружности, описанной около этого четырёхугольника.

Ответ: $$6\sqrt{13} $$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12193

В треугольнике АВС биссектриса угла А делит высоту, проведённую из вершины В, в отношении 17:15, считая от точки В. Найдите радиус окружности, описанной около треугольника АВС, если ВС=16.

Ответ: 17
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12214

В треугольнике АВС биссектриса угла А делит высоту, проведённую из вершины В, в отношении $$13:12$$, считая от точки В. Найдите радиус окружности, описанной около треугольника АВС, если $$ВС\ =\ 20.$$

Ответ: 26
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12235

Окружности радиусов 4 и 60 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и B — на второй. При этом АС и BD — общие касательные окружностей. Найдите расстояние между прямыми АВ и CD.

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12256

Окружности радиусов 44 и 77 касаются внешним образом. Точки А и В лежат на первой окружности, точки С и D - на второй. При этом АС и BD - общие касательные окружностей. Найдите расстояние между прямыми АВ и CD.

Ответ: 112
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12941

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника AMK .

Ответ: $$\frac{5}{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13009

В треугольнике АВС на его медиане ВМ отмечена точка К так, что ВК : КМ = 4 :9 . Прямая АК пересекает сторону ВС в точке Р. Найдите отношение площади треугольника АКМ к площади четырёхугольника КРСМ.

Ответ: 11:15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13030

Найдите площадь трапеции, диагонали которой равны 10 и 8, а средняя линия равна 3.

Ответ: 24
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13052

Найдите площадь трапеции, диагонали которой равны 17 и 15, а средняя линия равна 4.

Ответ: 60
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13073

В равнобедренную трапецию, периметр которой равен 160, а площадь равна 1280, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.

Ответ: 6,4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13096

В равнобедренную трапецию, периметр которой равен 20, а площадь равна 20, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.

Ответ: 0,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13117

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади четырехугольника KPCM к площади треугольника ABC.

Ответ: 0,45
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13140

Окружность, вписанная в треугольник ABC, касается его сторон в точках M,K и P. Найдите больший угол треугольника ABC, если углы треугольника MKP равны 56о , 58о и 66о.

Ответ: 68
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13162

Четырёхугольник ABCD со сторонами АВ = 40 и CD = 10 вписан в окружность. Диагонали АС и BD пересекаются в точке К, причём $$\angle AKB=60^{\circ}$$. Найдите радиус окружности, описанной около этого четырёхугольника.

Ответ: $$10\sqrt{7}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13184

Четырёхугольник ABCD со сторонами АВ = 12 и CD = 30 вписан в окружность. Диагонали АС и BD пересекаются в точке К, причём $$\angle AKB=60^{\circ}$$. Найдите радиус окружности, описанной около этого четырёхугольника.

Ответ: $$6\sqrt{13}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13205

Окружность радиуса 4 касается внешним образом второй окружности в точке B. Общая касательная к этим окружностям, проходящая через точку B пересекает некоторой другой их общей касательной в точке А. Найдите радиус второй окружности, если AB = 6.

Ответ: 9
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13226

В трапеции проведен отрезок, параллельный основаниям и делящий ее на две трапеции одинаковой площади. Найдите длину этого отрезка, если основания трапеции равны $$24\sqrt{2}$$ и $$7\sqrt{2}$$

Ответ: 25
 

Задание 13248

В равнобедренную трапецию, периметр которой равен 160, а площадь равна 1280, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.

Ответ: 6,4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13274

Точки М и N лежат на стороне АС треугольника АВС на расстояниях соответственно 9 и 11 от вершины А. Найдите радиус окружности, проходящей через точки М и А и касающейся луча АВ, если $$\cos \angle BAC=\frac{\sqrt{11}}{6}$$ .

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13295

Точки М и N лежат на стороне АС треугольника АВС на расстояниях соответственно 16 и 39 от вершины А. Найдите радиус окружности, проходящей через точки М и N и касающейся луча АВ, если $$\cos \angle BAC=\frac{\sqrt{39}}{8}$$.

Ответ: 12,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13359

В окружности с центром в точке O проведены две хорды AB и CD. Прямые AB и CD перпендикулярны и пересекаются в точке M, лежащей вне круга, ограниченного этой окружностью. При этом AM=36, BM=6, $$CD=4\sqrt{46}$$. Найдите OM.

Ответ: 29
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13418

Биссектриса СМ треугольника АВС делит сторону АВ на отрезки AM=8 и МВ=13. Касательная к окружности, описанной около треугольника АВС, проходит через точку С и пересекает прямую АВ в точке D. Найдите CD.

Ответ: 20,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 13439

В треугольнике ABC известны длины сторон AB=60, AC=80 , точка O - центр окружности, описанной около треугольника ABC . Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.

Ответ: 35
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13462

Биссектриса СМ треугольника АВС делит сторону АВ на отрезки AM=4 и МВ=9. Касательная к окружности, описанной около треугольника АВС, проходит через точку С и пересекает прямую АВ в точке D. Найдите CD.

Ответ: 7,2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13483

Углы при одном из оснований трапеции равны 53° и 37°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 6 и 2. Найдите основания трапеции.

Ответ: 8;4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13506

Углы при одном из оснований трапеции равны 80° и 10°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 20 и 17. Найдите основания трапеции.

Ответ: 37;3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13528

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше стороны длины AB. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.

Ответ: 4:9
 

Задание 13588

В трапеции ABCD основания АD и ВС равны соответственно 34 и 14, а сумма углов при основании АD равна 90°. Найдите радиус окружности, проходящей через точки А и В и касающейся прямой CD, если АВ=12.

Ответ: 14,4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13610

Четырёхугольник ABCD со сторонами AB=40 и CD=10 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём $$\angle AKB=60^{\circ}$$. Найдите радиус окружности, описанной около этого четырёхугольника.

Ответ: $$10\sqrt{7}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13632

В трапеции ABCD основания АD и ВС равны соответственно 34 и 2, а сумма углов при основании АD равна 90°. Найдите радиус окружности, проходящей через точки А и В и касающейся прямой CD, если АВ=24.

Ответ: 13,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13654

В прямоугольном треугольнике ABC с прямым углом B, проведена биссектриса угла A. Известно, что она пересекает серединный перпендикуляр, проведённый к стороне BC, в точке K . Найдите градусную меру угла BCK, если известно, что угол ACB равен 40.

Ответ: $$25^{\circ}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13718

На стороне ВС остроугольного треугольника АВС ($$AB\neq AC$$) как на диаметре построена полуокружность, пересекающая высоту AD в точке М, AD=80, MD=64, Н — точка пересечения высот треугольника АВС. Найдите АН.

Ответ: 28,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13739

На стороне ВС остроугольного треугольника АВС ($$AB\neq AC$$) как на диаметре построена полуокружность, пересекающая высоту AD в точке М, AD=90, МР=69, Н — точка пересечения высот треугольника АВС. Найдите АН.

Ответ: 37,1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13762

В треугольнике ABC на его медиане BM отмечена точка K так, что BK:KM=7:3. Прямая AK пересекает сторону BC в точке P. Найдите отношение площади треугольника BKP к площади четырёхугольника KPCM .

Ответ: 49/81
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13823

В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке О. Точка F принадлежит отрезку АС. Известно, что ВО=10, DO=14, АС=18. Найдите АВ, если площадь треугольника FBC в четыре раза меньше площади четырёхугольника ABCD.

Ответ: 7,2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13844

Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=48, BC=16, CF:DF=5:3.

Ответ: 36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13888

В треугольнике ABC известны длины сторон AB=36, AC=54, точка O — центр окружности, описанной около треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.

Ответ: 30
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13928

В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке О. Точка F принадлежит отрезку АС. Известно, что ВО=19, DO=16, АС=24. Найдите AF, если площадь треугольника FCD в три раза меньше площади четырёхугольника ABCD.

Ответ: 6,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13950

В параллелограмме ABCD проведена диагональ АС. Точка О является центром окружности, вписанной в треугольник АВС. Расстояния от точки О до точки А и прямых AD и АС соответственно равны 25, 15 и 7. Найдите площадь параллелограмма ABCD.

Ответ: 924
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13972

В параллелограмме ABCD проведена диагональ АС. Точка О является центром окружности, вписанной в треугольник АВС. Расстояния от точки О до точки А и прямых AD и АС соответственно равны 25, 13 и 7. Найдите площадь параллелограмма ABCD.

Ответ: 1120
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13994

В треугольнике АВС биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 96. Найдите стороны треугольника АВС.

Ответ: $$24\sqrt{13}$$; $$48\sqrt{13}$$; $$72\sqrt{5}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 14015

В треугольнике АВС биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 12. Найдите стороны треугольника АВС.

Ответ: $$3\sqrt{13}$$; $$6\sqrt{13}$$; $$9\sqrt{5}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 14048

В треугольнике АВС известны длины сторон АВ=28, АС=56, точка О — центр окружности, описанной около треугольника АВС. Прямая BD, перпендикулярная прямой АО, пересекает сторону АС в точке D. Найдите CD.

Ответ: 42
 

Задание 14070

В треугольнике АВС известны длины сторон АВ=14, АС=98, точка О — центр окружности, описанной около треугольника АВС. Прямая BD, перпендикулярная прямой АО, пересекает сторону АС в точке D. Найдите CD.

Ответ: 96
 

Задание 14092

В трапеции ABCD боковая сторона АВ перпендикулярна основанию ВС. Окружность проходит через точки С и D и касается прямой АВ в точке Е. Найдите расстояние от точки Е до прямой CD, если АО=6, ВС=5.

Ответ: $$\sqrt{30}$$
 

Задание 14114

В трапеции ABCD боковая сторона АВ перпендикулярна основанию ВС. Окружность проходит через точки С и D и касается прямой АВ в точке Е. Найдите расстояние от точки Е до прямой СD, если AD=4, ВС=2.

Ответ: $$2\sqrt{2}$$
 

Задание 14136

Окружности радиусов 44 и 77 касаются внешним образом. Точки А и В лежат на первой окружности, точки С и D — на второй. При этом АС и BD — общие касательные окружностей. Найдите расстояние между прямыми АВ и CD.

Ответ: 112
 

Задание 14158

Окружности радиусов 4 и 60 касаются внешним образом. Точки А и В лежат на первой окружности, точки С и D — на второй. При этом АС и BD — общие касательные окружностей. Найдите расстояние между прямыми АВ и CD.

Ответ: 15
 

Задание 14180

В треугольнике АВС биссектриса угла А делит высоту, проведённую из вершины В, в отношении 13:12, считая от точки В. Найдите радиус окружности, описанной около треугольника АВС, если ВС=20.

Ответ: 26
 

Задание 14202

В треугольнике АВС биссектриса угла А делит высоту, проведённую из вершины В, в отношении 17:15, считая от точки В. Найдите радиус окружности, описанной около треугольника АВС, если ВС=16.

Ответ: 17