Перейти к основному содержанию

ОГЭ

(C4) Геометрическая задача на вычисление

Треугольники

Задание 2670

ABC – равнобедренный треугольник с основанием AC, CD – биссектриса угла C, ∠ADC = 150°. Найдите ∠B.

Ответ: 140
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Пусть $$\angle A=\angle C=x$$ $$\Rightarrow$$ $$\angle ACD=\frac{x}{2}$$ (CD-биссектриса)

2) $$x+\frac{x}{2}+150=180^{\circ}$$ (из $$\bigtriangleup ADC$$) $$1,5x=30$$ $$\Rightarrow$$ $$x=20^{\circ}$$

3) $$\angle B=180^{\circ}-2x=180^{\circ}-40^{\circ}=140^{\circ}$$

 

Задание 2774

Точка М лежит внутри равнобедренного треугольника АВС с основанием АС на расстоянии 6 см от боковых сторон и на расстоянии $$\sqrt{3}$$ см от основания. Найдите основание треугольника, если $$\angle B=120^{\circ}$$.

Ответ: 30
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$\bigtriangleup BMC$$ - прямоугольный: $$\frac{CM}{BM}=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$$; $$\frac{6}{BM}=\frac{\sqrt{3}}{2}$$ $$\Rightarrow$$ $$BM=\frac{12}{\sqrt{3}}=4\sqrt{3}$$

2) $$BK=BM+MK=4\sqrt{3}+\sqrt{3}=5\sqrt{3}$$

3) $$\tan 60^{\circ}=\frac{AK}{BK}$$ (из $$\bigtriangleup ABK$$) $$\sqrt{3}=\frac{x}{5\sqrt{3}}$$ $$\Rightarrow$$ $$x=15$$ $$\Rightarrow$$ $$AC=15\cdot2=30$$

 

 

Задание 2816

Сторона АВ треугольника АВС разделена на три равные части и через точки деления проведены прямые, параллельные стороне АС. Найдите площадь трапеции, заключенной между ними, если площадь треугольника равна 93.

Ответ: 31
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\bigtriangleup BKP\sim \bigtriangleup BML\sim \bigtriangleup ABC$$

$$BK=\frac{1}{3}AB$$ $$\Rightarrow$$ $$S_{KBP}=\frac{1}{9}S_{ABC}=\frac{1}{9}\cdot93=10\frac{1}{3}$$

 

 

Задание 2928

Окружность с центром О вписана в прямоугольный треугольник АВС. Она касается гипотенузы АВ в точке М, причем АМ = 12 и ВМ = 8. Найдите площадь треугольника АОВ.

Ответ: 40
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Решение временно отсутствует, можете найти его в моем видео-разборе ( вначале варианта )

Задание 2977

В треугольнике ABC высота BD = 11,2 см, а высота AE = 12см. Точка E делит сторону BC в отношении 5:9, считая от вершины B. Найти длину стороны AC.

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Текстовое решение временно отсутствует. Вы можете найти разбор в видео перед вариантом

Задание 3018

Найдите площадь прямоугольного треугольника, если длина гипотенузы равна $$2\sqrt{13}$$ см, а длина медианы, проведенной из вершины большего острого угла равна 5 см.

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть $$AC=x$$; $$CB=2y$$

Из $$\bigtriangleup ACH$$ и $$\bigtriangleup ACB$$:

$$\left\{\begin{matrix}x^{2}+y^{2}=5^{2}\\x^{2}-(2y)^{2}=(2\sqrt{13})^{2}\end{matrix}\right.$$

$$4y^{2}-y^{2}=4\cdot13-25$$

$$3y^{2}=27\Rightarrow y^{2}=9\Rightarrow y=3$$

$$x^{2}+9=25\Rightarrow x=4$$

$$S=\frac{1}{2}AC\cdot CB=\frac{1}{2}\cdot x\cdot 2y=xy=3\cdot 4=12$$

 

 

Задание 3142

Найдите катеты прямоугольного треугольника, если его гипотенуза равна 20, а радиус вписанной окружности равен 4.

Ответ: 12 и 16
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Текстовое решение временно недоступно, вы можете найти его в видео в начале варианта

Задание 3313

В равнобедренном треугольнике с основанием АС и боковой стороной АВ проведена высота АD делящая боковую сторону ВС в отношении ВD : DC = 7 : 1. Найдите АВ если АС = 4 см.

Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 3408

В прямоугольном треугольнике АВС из вершины прямого угла В проведены медиана ВЕ и высота ВК. Найдите длину гипотенузы АС, если КЕ = 1, $$\angle BAK=60^{\circ}$$.

Ответ: 4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 3567

В треугольнике АВС АВ = ВС = 4см. АЕ = 3 см – медиана треугольника. Найдите АС.

Ответ: $$\sqrt{10}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) из $$\bigtriangleup ABE$$:

$$\cos B=\frac{AB^{2}+BE^{2}-AE^{2}}{2AB\cdot BC}=\frac{4^{2}+2^{2}-3^{2}}{2\cdot4\cdot2}=\frac{16+4-9}{16}=\frac{11}{16}$$

2) из $$\bigtriangleup ABC$$:

$$AC=\sqrt{AB^{2}+BC^{2}-2AB\cdot BC\cdot\cos B}=\sqrt{4^{2}+4^{2}-2\cdot4\cdot4\cdot\frac{11}{16}}=\sqrt{32-22}=\sqrt{10}$$

Задание 4329

В треугольнике АВС АС=АВ, медианы АМ и ВF пересекаются в точке О, АМ:ВF=8:5.Найдите BF, если площадь треугольника AOF равна 24.

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Пусть $$S_{ABC}=S$$, тогда $$S=2\cdot\frac{1}{2}\cdot AC\cdot AM\sin\alpha=AC\cdot AM\sin\alpha$$; $$S_{AFO}=\frac{1}{2}\cdot AF\cdot AO\sin\alpha=$$ $$\frac{1}{2}\cdot\frac{1}{2}AC\cdot\frac{2}{3}AM\sin\alpha=\frac{1}{6}AC\cdot AM\sin\alpha=24$$ $$\Rightarrow$$ $$AC\cdot AM\sin\alpha=144=S$$ $$\Rightarrow$$ $$\frac{1}{2}AM\cdot CB=144$$

2) Пусть $$AM=8x$$ $$\Rightarrow$$ $$BF=5x$$, по свойству медиан: $$OB=\frac{2}{3}BF=\frac{10x}{3}$$; $$OM=\frac{1}{3}AM=\frac{8x}{3}$$; $$MB=\sqrt{OB^{2}-OM^{2}}=\sqrt{(\frac{10x}{3})^{2}-(\frac{8x}{3})^{2}}=\frac{6x}{3}=2x$$ $$\Rightarrow$$ $$CB=4x$$

3) $$\frac{1}{2}AM\cdot CB=144$$; $$\frac{1}{2}\cdot8x\cdot4x=144$$; $$32x^{2}=288$$; $$x^{2}=9$$ $$x=3$$

4) $$BF=5x=5\cdot3=15$$

 

Задание 4535

Основание равнобедренного треугольника равно 12 см, а высота, проведенная к боковой стороне, равна 9,6 см. Найдите периметр треугольника

Ответ: 32
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Проведем $$BM\perp AC$$ $$\Rightarrow$$ $$\bigtriangleup BMC\sim\bigtriangleup AHC$$  (прямоугольные; $$\angle C$$ - общий)

2) $$MC=\frac{1}{2}AC=6$$; $$HC=\sqrt{12^{2}-9,6^{2}}=7,2$$;

3) $$\frac{BM}{AH}=\frac{MC}{HC}$$ $$\Rightarrow$$ $$BM=\frac{AH\cdot MC}{HC}=\frac{9,6\cdot6}{7,2}=8$$

4)$$BC=\sqrt{MC^{2}+BM^{2}}=10=AB$$

$$P_{ABC}=10+10+12=32$$

Задание 4652

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABC к площади четырёхугольника KPCM.

Ответ: 2,4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Выполним построение:

1)Точка K - середина BM, значит $$\frac{BK}{KM}=\frac{1}{1}$$
Точка M -середина AC, значит $$\frac{MA}{AC}=\frac{1}{2}$$
По теореме Менелая:
$$\frac{BK}{KM}*\frac{MA}{AC}*\frac{BK}{KM}=1$$
$$\frac{1}{1}*\frac{1}{2}*\frac{BK}{KM}=1$$
Тогда  $$\frac{BK}{KM}=\frac{2}{1}$$
2)Из пункта 1: $$BP=\frac{1}{3}BC$$
$$\frac{S_{BKP}}{S_{BMC}}=\frac{BK*BP}{BM*BC}$$
$$\frac{S_{BKP}}{S_{BMC}}=\frac{0,5BM*\frac{1}{3}BC}{BM*BC}=$$$$\frac{1}{6}$$
Тогда $$S_{KPCM}=\frac{5}{6}*S_{BMC}=$$$$\frac{5}{6}*\frac{1}{2}*S_{ABC}=\frac{5}{12}*S_{ABC}$$
Тогда $$\frac{S_{ABC}}{S_{KPCM}}=\frac{12}{5}$$

Задание 4897

Высота, опущенная на гипотенузу прямоугольного треугольника, делит его на два треугольника, площади которых равны соответственно 6 и 54. Найдите гипотенузу треугольника 

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Треугольники ACH и CHB подобны (оба прямоугольные, угол A такой же, как угол HCB). В таком случае можем найти коэффициент подобия $$k=\frac{AH}{CH}=\frac{CH}{HB}=\frac{AC}{CB} (1)$$
2) Площади подобных фигур относятся как квадрат коэффициента подобия, то есть: $$k^{2}=\frac{54}{6}$$, значит k=3
3) Пусть AH = 3x, тогда из равенства (1) получаем, что $$CH=\frac{AH}{3}=x$$, тогда $$HB=\frac{CH}{3}=\frac{x}{3}$$, тогда $$AB=3x+\frac{x}{3}=\frac{10x}{3}$$
4)$$S_{CHA}=\frac{1}{2}*AH*CH=\frac{3x*x}{2}=54$$. В таком случае x=6; тогда $$AB=\frac{10*6}{3}=20$$

Задание 5224

 На сторонах ВС и ВА треугольника АВС взяты точки E и F такие, что ВE:EС=1:3, ВF:FА=1:2. Площадь треугольника BEF равна 10. Найти площадь треугольника АВС 

Ответ: 120
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\frac{S_{ABC}}{S_{BEF}}=\frac{AB*BC}{BF*BE}(1)$$. Так как ВE:EС=1:3, то BC=4BE, так как ВF:FА=1:2, то AB=3BF. Подставим данные выражения в формулу (1): $$\frac{S_{ABC}}{S_{BEF}}=\frac{3BF*4BE}{BF*BE}=12$$, тогда $$S_{ABC}=12S_{BFE}=12*10=120$$

Задание 5320

Найдите площадь прямоугольного треугольника, если биссектриса прямого угла делит гипотенузу на отрезки длины 15 и 20 см.

Ответ: 294
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1)$$\frac{AC}{CB}=\frac{AL}{LB}=\frac{3}{4}$$ по свойству биссектрисы. Тогда, пусть AC=3x ; CB=4x

2)Из треугольника ABC по теореме Пифагора: $$AC^{2}+CB^{2}=AB^{2} \Leftrightarrow$$$$(3x)^{2}+(4x)^{2}=35^{2}$$. Отсюда x=7. Тогда AC=21 ; CB = 28.

3)$$S_{ABC}=\frac{1}{2}AC*CB=\frac{1}{2}*21*28=294$$

Задание 5542

Точка H является основанием высоты BH, проведённой из вершины прямого угла B прямо‐ угольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK, если BH = 11.

Ответ:

Задание 5543

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC относится к длине стороны AB как 7:10. Найдите отношение площади треугольника AKM к площади треугольника ABC.

Ответ:

Задание 5544

В треугольнике ABC угол С равен 90°, радиус вписанной окружности равен 2. Найдите площадь треугольника ABC, если AB = 12.

Ответ:

Задание 5545

Высота треугольника разбивает его основание на два отрезка с длинами 8 и 9. Найдите длину этой высоты, если известно, что другая высота треугольника делит ее пополам.

Ответ:

Задание 5546

Найдите отношение двух сторон треугольника, если его медиана, выходящая из их общей вершины, образует с этими сторонами углы в 30° и 90°.

Ответ:

Задание 5547

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN = 13, AC = 65, NC = 28.

Ответ:

Задание 5548

Катет и гипотенуза прямоугольного треугольника равны 18 и 30. Найдите высоту, проведённую к гипотенузе.

Ответ:

Задание 5549

Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит её пополам. Найдите сторону АС, если сторона АВ равна 4.

Ответ:

Задание 5550

Медианы треугольника ABC пересекаются в точке M. Найдите длину медианы, проведённой к стороне BC, если угол BAC равен 47°, угол BMC равен 133°, $$BC=4\sqrt{3}$$.

Ответ:

Задание 5551

В прямоугольном треугольнике ABC с прямым углом C известны катеты: AC=6,  BC=8. Найдите медиану CK этого треугольника

Ответ:

Задание 6261

В треугольник со сторонами АВ=8, ВС=6, АС=4 вписана окружность. Найдите длину отрезка DE, где D, Е – точки касания этой окружности со сторонами АВ и АС соответственно.

Ответ: $$\frac{3\sqrt{10}}{4}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть O-центр окружности , тогда: $$OD\perp AB OE\perp AC$$ (свойство радиуса к касательной)

     2) $$OD=OC=\frac{S}{p}=$$$$\sqrt{\frac{(p-a)(p-b)(p-c)}{p}}$$ (формула Герона); $$p=\frac{8+6+4}{2}=9$$; $$OD=\sqrt{\frac{(9-6)(9-8)(9-4)}{9}}=$$$$\sqrt{\frac{3*1*5}{9}}=\sqrt{\frac{5}{3}}$$

     3) $$\cos A=\frac{AB^{2}+AC^{2}-BC^{2}}{2*AB*AC}=\frac{8^{2}+4^{2}-6^{2}}{2*8*4}=\frac{11}{16}$$ (теорема косинусов)

     4) $$\angle DOE=180-\angle A\Rightarrow$$ $$\cos DOE=-\cos A=-\frac{11}{16}$$

     5)$$\Delta DOE$$: $$DE=\sqrt{DO^{2}+OE^{2}-2DO*OE*\cos DOE}=$$$$\sqrt{\frac{5}{3}+\frac{5}{3}+2\frac{5}{3}*\frac{11}{16}}=$$$$\sqrt{\frac{10}{36}+\frac{110}{16*3}}=$$$$\sqrt{\frac{270}{16*3}}=\sqrt{\frac{90}{16}}=\frac{3\sqrt{10}}{4}$$

Задание 6356

В прямоугольном треугольнике, периметр которого равен 36 см, вписана окружность. Гипотенуза делится точкой касания в отношении 2 : 3. Найдите длину гипотенузы.

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть $$\frac{AH}{HB}=\frac{2}{3}$$, тогда AH=2x; HB=3x

     2) По свойству касательных MB=HB=3x, NA=AH=2x

     3) Пусть ON=OH=OM=y, но NC=CM=y. Тогда по т. Пифагора :$$(y+2x)^{2}+(y+3x)^{2}=(5x)^{2}(1)$$

     4) т.к. P=36, то $$y+2x+y+3x+5x=36$$, $$2y=36-10x\Leftrightarrow y=18-5x$$

Подставим в (1)

$$(18-5x+2x)^{2}+(18-5x+3x)^{2}=25x^{2}$$

$$324-108x+9x^{2}+324-72x+4x^{2}=25x^{2}$$

$$12x^{2}+180x-648=0$$

$$x^{2}+15x-54=0$$

$$\left\{\begin{matrix}x_{1}+x_{2}=-15\\x_{1}*x_{2}=-54\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x_{1}=3\\x_{2}=-18\end{matrix}\right.$$

-18 не может быть, так как длина - число положительное, следовательно, $$5x=5*3=15$$ - длина гипотенузы

Задание 6552

Площадь равнобедренного треугольника с острым углом при вершине равна 48, а боковая сторона равна 10. Найдите высоту, опущенную на основание.

Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) $$S=\frac{1}{2}AB*BC *\sin B\Rightarrow$$ $$\sin B=\frac{2S}{AB^{2}}=$$$$\frac{2*48}{100}=0,96\Rightarrow$$ $$\cos B=\sqrt{1-0,96^{2}}=0,28$$

     2) $$AC=\sqrt{AB^{2}+BC^{2}-2AB*BC\cos B}=$$$$\sqrt{10^{2}+10^{2}-2*10*10*0,28}=12$$$$\Rightarrow HC=6$$

     3) из $$\Delta BHC$$: $$BH=\sqrt{BC^{2}-HC^{2}}=\sqrt{10^{2}-6^{2}}=8$$

Задание 6599

Высота, основание и сумма боковых сторон треугольника равны соответственно 12 см, 14 см, и 28 см. Найдите боковые стороны треугольника

Ответ: 15 и 13
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть $$AH=y\Rightarrow HC=14-y$$, $$AB=x\Rightarrow BC=28-x$$

     2) $$\Delta ABH$$: $$12^{2}+y^{2}=x^{2}(1)$$

$$\Delta BHC$$: $$12^{2}+(14-y)^{2}=(28-x)^{2}\Leftrightarrow$$$$144+196-28y+y^{2}=784-56x+x^{2}\Leftrightarrow$$$$444-56x+28y+x^{2}-y^{2}=0$$

Из (1): $$x^{2}-y^{2}=144$$, подставим во второе: $$28y-56x+444+144=0 |:28\Leftrightarrow$$$$y-2x=-21\Leftrightarrow$$ $$y=2x-21$$

Подставим в (1) : $$144+(2x-21)^{2}-x^{2}=0\Leftrightarrow$$$$144+4x^{2}-84x+441-x^{2}=0\Leftrightarrow$$$$3x^{2}-84x+585=0 |:3\Leftrightarrow$$$$x^{2}-28x+195=0$$

D=784-780=4

$$\left\{\begin{matrix}x_{1}=\frac{28+2}{2}=15=AB\\x_{2}=\frac{28-2}{2}=13=AB\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}BC=28-15=13\\BC=18-13=15\end{matrix}\right.$$

Тогда: AB=15 и BC=13 ( или наоборот)

Задание 6647

Точка H является основанием высоты BH, проведённой из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK, если BH=12.

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Рассмотрим $$\Delta PBK$$: $$\angle B=90\Rightarrow$$ PK-диаметр описанной окружности $$\Rightarrow PK=BH=12$$

Задание 6714

В прямоугольной трапеции с острым углом 45, большая боковая сторона равна $$16\sqrt{2}$$ см, а меньшая диагональ равна 20 см. Найдите площадь трапеции.

Ответ: 320
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть $$CH\perp AD$$, тогда $$\Delta CHD$$ – прямоугольный и равнобедренный и $$CH=CD\sin D=$$$$16\sqrt{2}*\frac{\sqrt{2}}{2}=16$$

     2) из $$\Delta AHC$$: $$AH=\sqrt{AC^{2}-CH^{2}}=12$$; т.е. CH и $$AB\perp AD$$, то BH=AH=12; AD=AH+HD=28

     3) $$S_{ABCD}=\frac{BC+AD}{2}*CH=$$$$\frac{12+28}{2}*16=320$$

Задание 6859

В треугольнике ABC на стороне AC как на диаметре построена окружность, которая пересекает сторону AB в точке M, а сторону BC – в точке N. Известно, что AC=2, AB=3, AM : MB = 2 : 3. Найдите AN..

Ответ: $$\frac{4,8}{\sqrt{5,8}}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

         1) $$AM :MB= 2: 3$$, $$AB=3$$$$\Rightarrow$$ $$AM=1,2$$, $$MB=1,8$$

         2) $$\Delta AMC$$: $$MC=\sqrt{AC^{2}-AM^{2}}=1,6$$

         3) $$\Delta MBC$$: $$BC=\sqrt{MB^{2}+MC^{2}}=\sqrt{5,8}$$

         4) $$\Delta ABN\sim \Delta CMB$$ (оба прямоугольные ,$$\angle B$$ - общий )$$\Rightarrow$$ $$\frac{AN}{MC}=\frac{AB}{BC}$$$$\Rightarrow$$ $$AN=\frac{1,6*3}{\sqrt{5,8}}=\frac{4,8}{\sqrt{5,8}}$$

Задание 6907

Биссектриса AD равнобедренного треугольника АВС делит его на треугольники АВD и ACD площадью 4 см2 и 2 см2 соответственно. Найдите стороны треугольника АВС, если АС – его основание.

Ответ: $$\frac{2\sqrt{6}}{\sqrt[4]{15}}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

      1) Т.к. $$\Delta ABD$$ и $$\Delta ADC$$ имеют общую вершину A , то : $$\frac{S_{ABD}}{S_{ADC}}=\frac{BD}{DC}=\frac{4}{2}=\frac{2}{1}$$. Пусть $$BD=2x$$, тогда $$DC=x$$ и $$AB=BC=3x$$

      2) По свойству биссектрисы: $$\frac{BD}{DC}=\frac{AB}{AC}=\frac{2}{1}$$, тогда $$AC=\frac{AB}{2}=1,5 x$$

      3) $$S_{ABC}=4+2=6$$, По формуле Герона : $$p=\frac{AB+BC+AC}{2}=\frac{15x}{4}$$; $$6=\sqrt{(\frac{15x}{4}-3x)^{2}*(\frac{15x}{4}-\frac{3x}{2})*\frac{15x}{4}}$$$$\Leftrightarrow$$ $$\frac{9x^{2}}{16}\sqrt{15}=6$$$$\Leftrightarrow$$ $$x=\frac{4\sqrt{6}}{3\sqrt[4]{15}}$$. Тогда $$AB=BC=\frac{4\sqrt{16}}{\sqrt[4]{15}}$$ и $$AC=\frac{2\sqrt{6}}{\sqrt[4]{15}}$$

Задание 7003

Медиана АМ треугольника АВС равна половине стороны ВС. Угол между АМ и высотой АН равен 40. Найдите углы треугольника АВС.

Ответ: 90, 65, 25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) т.к. медиана равна половине стороны, то $$\Delta ABC$$ – прямоугольный, при этом $$\angle A=90$$ и $$AM=CM=MB$$

     2) из $$\Delta AMH$$: $$\angle AMH=90-\angle MAH=50$$

     3) из $$\Delta AMC$$: $$\angle CAM +\angle ACM =\angle AMH$$ (как внешний угол при третьей вершине ),при этом $$\angle CAM=\angle ACM\Rightarrow$$ $$\angle ACM =\frac{50}{2}=25$$

     4) $$\angle B=90-\angle C=90-25=65$$

Задание 7279

В треугольнике с основанием 15 см проведен отрезок, параллельный основанию. Площадь полученной трапеции составляет ¾ площади треугольника. Найдите длину этого отрезка.

Ответ: 7,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть $$A_{1}C_{1}\left | \right |AC$$, тогда $$S_{AA_{1}C_{1}C}=\frac{3}{4} S_{ABC}$$$$\Rightarrow$$ $$S_{A_{1}BC_{1}}=\frac{1}{4} S_{ABC}$$

     2) $$\frac{S_{A_{1}BC_{1}}}{S_{ABC}}=$$$$(\frac{A_{1}C_{1}}{AC})^{2}=$$$$\frac{1}{4}\Rightarrow$$ $$\frac{A_{1}C_{1}}{AC}=\frac{1}{2}$$$$\Rightarrow$$ $$A_{1}C_{1}=7,5$$

Задание 7395

В равнобедренном треугольнике с углом 45 при основании вписан квадрат так, что одна из его сторон лежит на основании треугольника. Найдите площадь квадрата, если площадь треугольника равна 18.

Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7471

Найдите площадь равнобедренного треугольника, если высота, опущенная на основание равна 10 см, а высота, опущенная на боковую сторону равна 12 см.

Ответ: 75
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Опустим высоту BH и высоту AM=12. Так как треугольник равнобедренный, то AH=HC=x. Пусть BC=y. Тогда из треугольника BHC: $$BH^{2}+HC^{2}=BC^{2}$$.

     2) другой стороны из площади треугольника через его сторону и проведенную к ней высоту получим : $$BH*AC=AM*BC$$. Тогда: $$\left\{\begin{matrix}10^{2}+x^{2}=y^{2}\\10*2x=12*y\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}10^{2}+x^{2}=(\frac{5x}{3})^{2}\\ y=\frac{5x}{3}\end{matrix}\right.\Rightarrow$$ $$900+9x^{2}=25x^{2}\Rightarrow$$ $$x=7,5$$

     3) Площадь треугольника в таком случае: $$S=\frac{1}{2}AC*BH=\frac{1}{2}*2*7,5*10=75$$

Задание 7497

В треугольник вписана окружность с радиусом 4. Одна из сторон треугольника разделена точкой касания на отрезки, длины которых 6 и 8. Найдите дины сторон треугольника.

Ответ: 13;14;15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7591

Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC . Найдите AB , если AH=3, AC=27

Ответ: 9
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7618

В треугольнике АВС медианы СD и ВЕ пересекаются в точке К. Найдите площадь четырёхугольника АDКЕ, если ВС=20, АС=12, $$\angle ACB=135^{\circ}$$.

Ответ: $$20\sqrt{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7811

В равнобедренном треугольнике АВС основание АС равно 6 см, а высота опущенная на основание равна 4 см. Найдите периметр треугольника СНВ, где СН – высота, опущенная на боковую сторону.

Ответ: 11,2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7907

AA1 – медиана треугольника ABC . Точка C1 лежит на стороне AB , причём AC1:C1B=1:2. Отрезки AA1 и CC1 пересекаются в точке M. Найдите отношение CM:MC1

Ответ: 3:1
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 8425

Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C. Найдите длину отрезка KP, если AP=18, а сторона BC в 1,2 раза меньше стороны AB .

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Пусть $$BC=x$$ $$\Rightarrow$$ $$AB=1,2x$$

2) $$\angle B+\angle KPC=180^{\circ}$$ ($$BKPC$$ - вписан), $$\angle KPC+\angle APK=180^{\circ}$$ (смежные) $$\Rightarrow$$ $$\angle APK=\angle B$$; $$\angle A$$ - общий $$\Rightarrow$$ $$\bigtriangleup APK\sim\bigtriangleup ABC$$

3) $$\frac{KP}{BC}=\frac{AP}{AB}$$ $$\Rightarrow$$ $$KP=\frac{BC\cdot AP}{AB}=\frac{x\cdot18}{1,2x}=15$$

Задание 8477

Прямая AD, перпендикулярная медиане BM треугольника ABC, делит её пополам. Найдите сторону AB, если AC=10.

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8828

Прямая пересекает стороны АВ и ВС треугольника АВС в точках К и N соответственно. Известно, что АВ=12, ВС=15, АС=24, AK=7, CN=11. Найдите длину отрезка КN.

Ответ: 8
Скрыть
  1. ВК=АВ-АК=12-7=5
  2. ВN=ВС-ВN=15-11=4
  3. Рассмотрим треугольники АВС и КВN. Угол В общий АВ/ВN=BC/BK, т.к.12/4 =15/5 =3 Следовательно данные треугольники подобны по двум сторонам и углу между ними, причем коэффициент подобия равен 3.
  4. Поэтому и АС/КN =3, т.е. 24/КN =3, т.е. КN=8
 

Задание 8855

Прямая пересекает стороны АВ и ВС треугольника АВС в точках К и N соответственно. Известно, что АВ=9, ВС=12, АС=18, AK=5, CN=9. Найдите длину отрезка КN.

Ответ: 6
 

Задание 8973

В прямоугольном треугольнике ABC с прямым углом C известны катеты: AC=6, BC=8 . Найдите медиану CK этого треугольника.

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9066

Углы В и С треугольника АВС равны соответственно 64° и 86°. Найдите ВС, если диаметр окружности, описанной около треугольника АВС, равен 13.

Ответ: 6,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9195

Прямая, параллельная стороне АС треугольника АВС, пересекает стороны АВ и ВС в точках М и N соответственно. Найдите BN, если MN=20, АС=35, NC=39.

Ответ: 52
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9221

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках М и N соответственно. Найдите BN, если MN=15, AC=25, NC=22.

Ответ: 33
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9267

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN , если MN=16 , AC=20 , NC=15 .

Ответ: 60
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9425

Углы В и С треугольника АВС равны соответственно 66° и 84°. Найдите ВС, если радиус окружности, описанной около треугольника АВС, равен 15.

Ответ: 15
 

Задание 9445

Углы В и С треугольника АВС равны соответственно 64° и 86°. Найдите ВС, если диаметр окружности, описанной около треугольника АВС, равен 13.

Ответ: 6,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9471

В прямоугольном треугольнике ABC с прямым углом C известны катеты: AC=6, BC=8. Найдите медиану CK этого треугольника.

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9559

Углы В и С треугольника АВС равны соответственно 66° и 84°. Найдите ВС, если радиус окружности, описанной около треугольника АВС, равен 15.

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9586

Прямая AD, перпендикулярная медиане BM треугольника ABC, делит её пополам. Найдите сторону AC, если сторона AB равна 4

Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9711

Стороны AC, AB, BC треугольника ABC равны $$2\sqrt{2}$$, 5 и 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает отрезок AB в точке, отличной от B . Известно, что треугольник с вершинами K, A, C подобен треугольнику ABC . Найдите градусную меру угла AKC , если $$\angle$$KAC>90 .

Ответ: 45
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9737

Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если известно, что AB=18, DC=54, AC=48

Ответ: 36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9764

Найдите боковую сторону АВ трапеции ABCD, если углы ABC и BCD  равны соответственно 30° и 120°, а CD=25.

Ответ: $$25\sqrt{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9832

Медианы треугольника ABC пересекаются в точке M. Найдите длину медианы, проведённой к стороне BC , если $$\angle$$BAC =47 , $$\angle$$BMC=133, BC=$$4\sqrt{3}$$.

Ответ: 6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9859

Катет и гипотенуза прямоугольного треугольника равны 21 и 75. Найдите высоту, проведённую к гипотенузе.

Ответ: 20,16
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9978

Катет и гипотенуза прямоугольного треугольника равны 20 и 52. Найдите высоту, проведённую к гипотенузе.

Ответ: 240/13
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10244

Стороны AC , AB и треугольника BC ABC равны $$2\sqrt{2}$$,$$\sqrt{5}$$ и 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен треугольнику ABC. Найдите косинус угла AKC, если угол KAC является тупым

Ответ: $$\frac{\sqrt{2}}{2}$$
 

Задание 10362

В треугольнике ABC угол B равен 72o , угол равен C=63o , $$BC=2\sqrt{2}$$. Найдите радиус окружности, описанной около этого треугольника.

Ответ: 2
 

Задание 10374

Окружность, вписанная в треугольник ABC , касается сторон в точках M, N, P. Найдите углы треугольника ABC , если углы треугольника MNP равны 49o, 69o и 62o

Ответ: 82;42;56
 

Задание 10466

В равнобедренной трапеции ABCD с большим основанием AD биссектриса угла А пересекается с биссектрисой угла С в точке F, а также пересекает сторону CD в точке К. Известно, что прямые АВ и CF параллельны. Найдите CF, если FK=$$4\sqrt{3}$$.

Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
  1. Пусть $$AF \cap BC=E$$. Так как ABCD – равнобедренная трапеция,$$\angle BAC+\angle BCD=180^{\circ}$$. Пусть $$\angle BAC=2\alpha\Rightarrow$$$$\angle BCD=180^{\circ}-2\alpha$$. Тогда $$\angle ECK=2\alpha$$, $$\angle CEK=\alpha$$ ($$\frac{\angle A}{2}$$ - как накрест лежащие)
  2. $$\angle AFC=\angle BAF=\alpha=\angle CFK$$ (накрест лежащие и вертикальные)
  3. $$\angle FCK=\frac{180^{\circ}-2\alpha}{2}=90^{\circ}-\alpha$$. Из треугольника CFK $$\angle CKF=180^{\circ}-(\alpha+90^{\circ}+\alpha)=90^{\circ}$$
  4. Из треугольника CKE: $$90^{\circ}+3\alpha=180^{\circ}\Rightarrow$$$$\alpha=30^{\circ}$$
  5. $$CF=\frac{FK}{\cos CFK}=$$$$\frac{4\sqrt{3}}{\frac{\sqrt{3}}{2}}=8$$
 

Задание 11066

Высота треугольника разбивает его основание на два отрезка с длинами 8 и 9. Найдите длину этой высоты, если известно, что другая высота треугольника делит её пополам.

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Пусть $$BH$$ и $$CM$$ - высоты, $$CM\cap BH=P;HP=PB.$$ Пусть $$HP=PB=x.$$ $$\angle BPM=\angle HPC$$ - вертикальные. $$\triangle BMP\sim \triangle ABH$$ (прямоугольные с общим острым углом) $$\to \angle BAH=\angle MPB=\alpha .$$

Из $$\triangle ABH:{\tan \alpha \ }=\frac{2x}{8}=\frac{x}{4}$$

Из $$\triangle PHC:{\tan \alpha \ }=\frac{9}{x}$$

Получим: $$\frac{x}{4}=\frac{9}{x}=x^2=36\to x=6\to BH=12$$

 

Задание 11171

Прямая пересекает стороны АВ и ВС треугольника АBС в точках К и N соответственно. Известно, что АВ = СN = 16, ВС = 20, АС = 28, АК = 11. Найдите длину отрезка КN.

Ответ: 7
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
В треугольнике ΔBNK найдём стороны BK и BN: BK = BA – AK = 16 – 11 = 5 BN = BC – CN = 20 – 16 = 4
Рассмотрим треугольники ΔBNK и ΔBAC, в них угол ∠В общий. Мысленно перевернём ΔBNK и поменяем местами стороны BK и BN.
Сторона BK относится к стороне BC как: $$\frac{BK}{BC}=\frac{5}{20}=\frac{1}{4}$$
Сторона BN относится к стороне BA как: $$\frac{BN}{BA}=\frac{4}{16}=\frac{1}{4}$$
Коэффициент подобия один, значит треугольники подобны, тогда подобны и третьи стороны: $$\frac{KN}{AC}=\frac{1}{4}$$. Тогда $$KN=\frac{28}{4}=7$$
 

Задание 11259

Прямая AD, перпендикулярная медиане BM треугольника ABC, делит угол BAC пополам. Найдите сторону AB, если сторона AC равна 4.

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11301

Прямая пересекает стороны АВ и ВС треугольника АВС в точках К и N соответственно. Известно, что АВ=12, ВС=15, АС=24, AК=7, CN=11. Найдите длину отрезка KN.

Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11322

Прямая пересекает стороны АВ и ВС треугольника АВС в точках К и N соответственно. Известно, что АВ=9, ВС=12, АС=18, АK=5, CN=9. Найдите длину отрезка KN.

Ответ: 6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11539

Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C. Определите длину отрезка KP, если AP=30, а сторона BC в 1,2 раза меньше стороны AB .

Ответ: 25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11560

Прямая, параллельная стороне АС треугольника АВС, пересекает стороны АВ и ВС в точках М и N соответственно. Найдите BN, если MN=20, АС=35, NC=39.

Ответ: 52
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11582

Прямая, параллельная стороне АС треугольника АВС, пересекает стороны АВ и ВС в точках М и N соответственно. Найдите BN, если MN=15, АС=25, NC=22.

Ответ: 33
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11627

Стороны AC, AB, BC треугольника ABC равны $$2\sqrt{3}$$, $$\sqrt{7}$$ и 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если $$\angle KAC>90^{\circ}$$

Ответ: $$\frac{\sqrt{3}}{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11628

В остроугольном треугольнике ABC проведены высоты AA1и BB1. Докажите, что углы AA1B1  и ABB1  равны. 

Ответ: ч.т.д.
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11647

Биссектрисы угла A при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=24, BF=10.

Ответ: 26
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11792

Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C. Найдите длину отрезка KP , если AK=34, а сторона AC в 2 раза больше стороны BC.

Ответ: 17
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11814

Углы В и С треугольника АВС равны соответственно 64° и 86°. Найдите ВС, если диаметр окружности, описанной около треугольника АВС, равен 13.

Ответ: 6,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11836

Углы В и С треугольника АВС равны соответственно 66° и 84°. Найдите ВС, если радиус окружности, описанной около треугольника АВС, равен 15.

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11926

Катет и гипотенуза прямоугольного треугольника равны 21 и 75. Найдите высоту, проведённую к гипотенузе.

Ответ: 20,16
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11947

Катет и гипотенуза прямоугольного треугольника равны 20 и 52. Найдите высоту, проведённую к гипотенузе.

Ответ: $$\frac{240}{13}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12023

Отрезки АВ и DC лежат на параллельных прямых, а отрезки АС и BD пересекаются в точке М. Найдите МС, если АВ=16, DC=24, АС=25.

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12044

Отрезки АВ и DC лежат на параллельных прямых, а отрезки АС и BD пересекаются в точке М. Найдите МС, если АВ=18, DC=54, АС=48.

Ответ: 36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12107

Точка Н является основанием высоты ВН, проведённой из вершины прямого угла В прямоугольного треугольника АВС. Окружность с диаметром ВН пересекает стороны АВ и СВ в точках Р и К соответственно. Найдите ВН, если $$PK=13.$$

Ответ: 13
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12128

Точка Н является основанием высоты ВН, проведённой из вершины прямого угла В прямоугольного треугольника АВС. Окружность с диаметром ВН пересекает стороны АВ и СВ в точках Р и К соответственно. Найдите BH, если $$PK=11$$.

Ответ: 11
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12149

Точка Н является основанием высоты, проведённой из вершины прямого угла В треугольника АВС к гипотенузе АС. Найдите АВ, если $$АН\ =5,\ АС\ =\ 45.$$

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12170

Точка Н является основанием высоты, проведённой из вершины прямого угла В треугольника АВС к гипотенузе АС. Найдите АВ, если $$АН = 3, АС = 27.$$

Ответ: 9
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12233

Окружность с центром на стороне АС треугольника АВС проходит через вершину С и касается прямой АВ в точке В. Найдите диаметр окружности, если $$AB=1, AC=5.$$

Ответ: 4,8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12254

Окружность с центром на стороне АС треугольника АВС проходит через вершину С и касается прямой АВ в точке В. Найдите АС, если диаметр окружности равен 15, а $$AB=4$$

Ответ: 16
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12939

В треугольнике ABC угол C равен $$90^{\circ}$$, радиус вписанной окружности равен 3. Найдите площадь треугольника ABC, если AB=15.

Ответ: 54
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12986

Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны АВ и CD в точках Е и F соответственно. Найдите длину отрезка EF, если AD = 35, ВС = 21, CF:DF = 5:2.

Ответ: 31
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13028

Прямая пересекает стороны АВ и ВС треугольника АВС в точках K и  N соответственно. Известно, что AB = CN=16, ВС = 20, АС = 28, АК=11. Найдите длину отрезка KN.

Ответ: 7
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13071

Отрезки АВ и DC лежат на параллельных прямых, а отрезки АС и BD пересекаются в точке М. Найдите МС, если АВ=14, DC=56, АС=40.

Ответ: 32
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13094

Отрезки АВ и DC лежат на параллельных прямых, а отрезки АС и BD пересекаются в точке М. Найдите МС, если АВ = 15, DC = 30, АС = 39.

Ответ: 26
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13138

Прямая AD, перпендикулярная медиане BM треугольника ABC, делит угол BAC пополам. Найдите сторону AB, если сторона AC равна 4.

Ответ: 2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13160

Точка Н является основанием высоты, проведённой из вершины прямого угла В треугольника АВС к гипотенузе АС. Найдите АВ, если АН = 4, АС = 16.

Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13182

Точка Н является основанием высоты, проведённой из вершины прямого угла В треугольника АВС к гипотенузе АС. Найдите АВ, если АН = 9, АС = 36.

Ответ: 18
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13203

В треугольнике ABC углы A и C равны 20о и 60о соответственно. Найдите угол между высотой BH и биссектрисой BD.

Ответ: 20
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13246

Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и пересекаются BD в точке M. Найдите MC, если AB = 13, DC = 65, AC = 42.

Ответ: 35
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13314

Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 6:13:17. Найдите радиус окружности, если меньшая из сторон равна 18.

Ответ: 18
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13336

Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 6:11:19. Найдите радиус окружности, если меньшая из сторон равна 15.

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13437

Найдите отношение двух сторон треугольника, если его медиана, выходящая из их общей вершины, образует с этими сторонами углы в 30o и 90o.

Ответ: 1:2
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13504

Окружность пересекает стороны АВ и АС треугольника АВС в точках К и Р соответственно и проходит через вершины В и С. Найдите длину отрезка КР, если АК=7, а сторона АС в 1,4 раза больше стороны ВС.

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13586

Прямая пересекает стороны АВ и ВС треугольника АВС в точках К и N соответственно. Известно, что АВ=12, ВС=15, АС=24, АК=7, CN=11. Найдите длину отрезка KN.

Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13608

Высота треугольника разбивает его основание на два отрезка с длинами 8 и 9. Найдите длину этой высоты, если известно, что другая высота треугольника делит её пополам.

Ответ: 12
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13630

Прямая пересекает стороны АВ и ВС треугольника АВС в точках К и N соответственно. Известно, что АВ=9, ВС=12, АС=18, АK=5, CN=9. Найдите длину отрезка KN.

Ответ: 6
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13676

В треугольнике ABC угол равен 90o, радиус вписанной окружности равен 3. Найдите площадь треугольника ABC, если AB=15.

Ответ: 54
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13842

Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB=11, DC=55, AC=30.

Ответ: 25
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13886

Точка H является основанием высоты BH, проведённой из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK, если BH=15.

Ответ: 15
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13948

Прямая, параллельная стороне АС треугольника АВС, пересекает стороны АВ и ВС в точках М и N соответственно. Найдите BN, если MN=20, АС=35, NC=39.

Ответ: 52
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13970

Прямая, параллельная стороне АС треугольника АВС, пересекает стороны АВ и ВС в точках М и N соответственно. Найдите BN, если MN=15, АС=25, NC=22.

Ответ: 33
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 14090

Катет и гипотенуза прямоугольного треугольника равны 21 и 75. Найдите высоту, проведённую к гипотенузе.

Ответ: 20,16
 

Задание 14112

Катет и гипотенуза прямоугольного треугольника равны 20 и 52. Найдите высоту, проведённую к гипотенузе.

Ответ: $$\frac{240}{13}$$
 

Задание 14134

Окружность с центром на стороне АС треугольника АВС проходит через вершину С и касается прямой АВ в точке В. Найдите АС, если диаметр окружности равен 15, а AB=4.

Ответ: 16