Перейти к основному содержанию

ОГЭ

(C1) Алгебраические выражения, уравнения, неравенства и их системы

Системы уравнений

Задание 2335

Ре­ши­те си­сте­му урав­не­ний: $$\left\{\begin{matrix}3x+y=5,\\\frac{x+2}{5}+\frac{y}{2}=-1\end{matrix}\right.$$

Ответ: (3; -4)
Скрыть

$$\left\{\begin{matrix}3x+y=5,\\\frac{x+2}{5}+\frac{y}{2}=-1|\cdot10\end{matrix}\right.$$ $$\left\{\begin{matrix}y=5-3x\\2x+4+5y=-10\end{matrix}\right.$$; $$2x+4+5(5-3x)=-10$$; $$2x+4+25-15x=-10$$; $$-13x=-39$$; $$x=-3$$; $$y=5-3\cdot3=5-9=-4$$

Задание 2336

Ре­ши­те си­сте­му урав­не­ний: $$\left\{\begin{matrix}x-y=-5,\\x^{2}-2xy-y^{2}=17\end{matrix}\right.$$

Ответ: (-7; -2), (-3; 2)
Скрыть

$$\left\{\begin{matrix}x-y=-5,\\x^{2}-2xy-y^{2}=17\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x=y-5\\x^{2}-2xy-y^{2}=17\end{matrix}\right.$$; $$(y-5)^{2}-2(y-5)y-y^{2}=17$$; $$y^{2}-10y+25-2y^{2}+10y-y^{2}=17$$; $$-2y^{2}=-8$$; $$y^{2}=4$$;

$$\left\{\begin{matrix}y_{1}=2\\y_{2}=-2\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x_{1}=2-5=-3\\x_{2}=-2-5=-7\end{matrix}\right.$$

Задание 2337

Ре­ши­те си­сте­му урав­не­ний: $$\left\{\begin{matrix}x^{2}+3x+y^{2}=2,\\x^{2}+3x-y^{2}=-6\end{matrix}\right.$$

Ответ: (-2; -2), (-2; 2), (-1; -2), (-1; 2)
Скрыть

Вычтем из первого уравнения второе: $$x^{2}+3x+y^{2}-(x^{2}+3x-y^{2})=2-(-6)\Leftrightarrow$$$$2y^{2}=8|:2\Leftrightarrow$$$$y^{2}=4\Leftrightarrow$$$$y=\pm 2$$
Подставим $$y^{2}=4$$ в любое из уравнений (в первое):
$$x^{2}+3x+4=2\Leftrightarrow$$$$x^{2}+3x+2=0\Leftrightarrow$$$$\left[\begin{matrix}x_{1}+x_{2}=-3\\x_{1}*x_{2}=2 \end{matrix}\right.\Leftrightarrow $$$$\left[\begin{matrix}x_{1}=-2\\x_{2}=-1 \end{matrix}\right.$$
Следовательно, в ответе получаем четыре точки: (-2; -2), (-2; 2), (-1; -2), (-1; 2)

Задание 2338

Ре­ши­те си­сте­му урав­не­ний: $$\left\{\begin{matrix}3x-y=2,\\x^{2}-4x+8=y\end{matrix}\right.$$

Ответ: (2; 4), (5; 13)
Скрыть

$$\left\{\begin{matrix}3x-y=2,\\x^{2}-4x+8=y\end{matrix}\right.\Leftrightarrow$$$$\left\{\begin{matrix}3x-2=y,\\x^{2}-4x+8=3x-2\end{matrix}\right.$$
$$x^{2}-4x+8=3x-2\Leftrightarrow$$$$x^{2}-7x+10=0\Leftrightarrow$$$$\left[\begin{matrix}x_{1}+x_{2}=7\\x_{1}*x_{2}=10\end{matrix}\right.\Leftrightarrow$$$$ \left[\begin{matrix}x_{1}=5\\x_{2}=2\end{matrix}\right.\Leftrightarrow$$$$ \left[\begin{matrix}y_{1}=3*5-2=13\\y_{2}=3*2-2=4\end{matrix}\right.$$
В итоге получаем две точки: (2; 4), (5; 13)

Задание 2339

Ре­ши­те си­сте­му урав­не­ний: $$\left\{\begin{matrix}(2x+3)^{2}=5y,\\(3x+2)^{2}=5y\end{matrix}\right.$$

Ответ: (1; 5), (-1; $$\frac{1}{5}$$)
Скрыть

$$\left\{\begin{matrix}(2x+3)^{2}=5y,\\(3x+2)^{2}=5y\end{matrix}\right.$$
$$(2x+3)^{2}=(3x+2)^{2}\Leftrightarrow$$$$(2x+3)^{2}-(3x+2)^{2}=0\Leftrightarrow$$$$(2x+3-3x-2)(2x+3+3x+2)=0\Leftrightarrow$$$$(1-x)(5x+5)=0\Leftrightarrow$$$$\left[\begin{matrix}x_{1}=1\\x_{2}=-1\end{matrix}\right.\Leftrightarrow$$$$ \left[\begin{matrix}(2*1+3)^{2}=5y_{1}\\(2*(-1)+3)^{2}=5y_{2}\end{matrix}\right.\Leftrightarrow$$$$ \left[\begin{matrix}y_{1}=5\\y_{2}=\frac{1}{5}\end{matrix}\right.$$
В итоге получаем точки: (1; 5), (-1; $$\frac{1}{5}$$)

Задание 2340

Ре­ши­те си­сте­му урав­не­ний: $$\left\{\begin{matrix}(x-4)(y-6)=0,\\\frac{y-4}{x+y-8}=2\end{matrix}\right.$$

Ответ: (3; 6)

Задание 2341

Ре­ши­те си­сте­му урав­не­ний: $$\left\{\begin{matrix}x^{2}+y=5,\\6x^{2}-y=2\end{matrix}\right.$$

Ответ: (-1; 4); (1; 4)

Задание 2367

Решите систему уравнений: $$\left\{\begin{matrix}x^{2}+y^{2}=37\\x\cdot y=6\end{matrix}\right.$$

Ответ: (-1; -6), (1; 6), (-6; -1), (6; 1).

Задание 2368

Pешите систему уравнений: $$\left\{\begin{matrix}2x^{2}+3y^{2}=11\\4x^{2}+6y^{2}=11x\end{matrix}\right.$$

Ответ: (2; -1), (2; 1).

Задание 2974

Решите систему уравнений $$\left\{\begin{matrix} xy+x+y=27\\ xy-2(x+y)=2 \end{matrix}\right.$$

Ответ: (5;4) ; (4;5)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Текстовое решение временно отсутствует. Вы можете найти разбор в видео перед вариантом

Задание 3271

Решите систему уравнений: $$\left\{\begin{matrix}x^{2}+xy=4y\\y^{2}+xy=4x\end{matrix}\right.$$

Ответ: (0;0); (2;2)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\left\{\begin{matrix}x^{2}+xy=4y\\y^{2}+xy=4x\end{matrix}\right.$$ $$x^{2}-y^{2}=4y-4x$$ $$(x-y)(x+y)-4(y-x)=0$$ $$(x-y)(x+y)+4(x-y)=0$$ $$(x-y)(x+y+4)=0$$ $$\left\{\begin{matrix}x=y\\x=-4-y\end{matrix}\right.$$ 1) $$x=y$$ $$y^{2}+y\cdot y=4y$$ $$\Leftrightarrow$$ $$2y^{2}-4y=0$$ $$2y(y-2)=0$$ $$y=0$$ $$\Rightarrow$$ $$x=0$$ $$y=2$$ $$\Rightarrow$$ $$x=2$$ 2) $$x=-4-y$$ $$(-4-y)^{2}+(-4-y)y=4y$$ $$16+8y+y^{2}-4y-y^{2}-4y=0$$ $$16=0$$ $$\Rightarrow$$ нет решений

Задание 3357

Решите систему уравнений $$\left\{\begin{matrix} x^{2}-y^{2}=3\\ x^{3}-y^{3}=7(x-y)\end{matrix}\right.$$

Ответ: $$(2;1);(-2;-1);$$$$(-\frac{5}{\sqrt{3}};\frac{4}{\sqrt{3}});$$$$(\frac{5}{\sqrt{3}};-\frac{4}{\sqrt{3}})$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 3841

Решите систему уравнений: $$\left\{\begin{matrix}x^{2}+7x-y+11=0\\y^{2}+3x-y+15=0\end{matrix}\right.$$

Ответ: $$(-5;1)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Сложим эти два уравнения: $$x^{2}+y^{2}+10x-2y+26=0$$ $$x^{2}+10x+25+y^{2}-2y+1=0$$ $$(x+5)^{2}+(y-1)^{2}=0$$ Сумма 2х квадратов равна 0 тогда, когда оба равны 0. $$\left\{\begin{matrix}x+5=0\\y-1=0\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x=-5\\y=1\end{matrix}\right.$$

Задание 4649

Решите систему уравнений $$\left\{\begin{matrix} x^{2}-5xy+4y^{2}=0\\ 2x^{2}-y^{2}=31 \end{matrix}\right.$$

Ответ: $$(4;1);(-4;-1);(\sqrt{31};\sqrt{31});(-\sqrt{31};-\sqrt{31})$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Решим первое уравнение системы относительно у: $$x^{2}-5xy+4y^{2}=0$$ $$D=(-5y)^{2}-4*4y^{2}=9y^{2}$$ $$x_{1}=\frac{5y+3y}{2}=4y$$ $$x_{2}=\frac{5y-3y}{2}=y$$ Подставим первый х во второе: $$2*(4y)^{2}-y^{2}=31$$ $$y^{2}=1$$ $$y_{1a}=1 ; y_{1b}=-1$$ Тогда: $$x_{1a}=4 ; x_{1b}=-4$$ Подставим второй х во второе: $$2*y^{2}-y^{2}=31$$ $$y^{2}=31$$ $$y_{2a}=\sqrt{31} ; y_{2b}=-\sqrt{31}$$ Тогда: $$x_{2a}=\sqrt{31} ; x_{2b}=-\sqrt{31}$$

Задание 5170

Решите систему уравнений $$\left\{\begin{matrix}x^{3}+xy^{2}=10\\y^{3}+x^{2}y=5\end{matrix}\right.$$

Ответ: (2;1)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\left\{\begin{matrix}x^{3}+xy^{2}=10\\y^{3}+x^{2}y=5\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x(x^{2}+y^{2})=10\\y(y^{2}+x^{2})=5\end{matrix}\right.$$

Поделим первое на второе $$\frac{x}{y}=\frac{10}{5}$$ $$\Rightarrow$$ $$x=2y$$

Подставим в первое: $$(2y)^{3}+2y\cdot y^{2}=10$$; $$10y^{3}=10$$; $$y^{3}=1$$; $$y=1$$ $$\Rightarrow$$ $$x=2$$

Задание 6068

Решите систему уравнений: $$\left\{\begin{matrix}5(2x-1)+1=6(y+1)-8 & & \\2(x+3y)+5=3(y-2x)+4 & &\end{matrix}\right.$$

Ответ: $$(0;-\frac{1}{3})$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\left\{\begin{matrix}5(2x-1)+1=6(y+1)-8\\2(x+3y)+5=3(y-2x)+4\end{matrix}\right.\Leftrightarrow $$$$\left\{\begin{matrix}10x-5+1-6y-6+8=0\\2x+6y+5-3y+6x-4=0\end{matrix}\right.\Leftrightarrow $$$$\left\{\begin{matrix}10x-6y-2=0\\8x+3y+1=0 \end{matrix}\right.\Leftrightarrow $$$$\left\{\begin{matrix}10x-6y-2=0\\16x+6y+2=0\end{matrix}\right.$$ Сложим первое и второе , $$10x+16x-6y+6y-2+2=0$$ $$26x=0 \Rightarrow x=0$$ Тогда : $$10*0-6y-2=0 \Leftrightarrow 6y=-2 \Leftrightarrow y=-\frac{1}{3}$$

Задание 6306

Решите систему уравнений $$\left\{\begin{matrix}x^{2}+xy+y^{2}=37\\ x^{3}-y^{3}=37\end{matrix}\right.$$

Ответ: (-3;-4) (4;3)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\left\{\begin{matrix}x^{2}+xy+y^{2}=37\\x^{3}-y^{3}=37\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x^{2}+xy+y^{2}=37\\(x-y)(x^{2}+xy+y^{2})=37\end{matrix}\right.$$ Поделим второе на первое уравнение :$$x-y=1\Leftrightarrow x=1+y$$ $$(1+y)^{2}+(1+y)y+y^{2}=37$$ $$1+2y+y^{2}+y+y^{2}+y^{2}=37$$ $$3y^{2}+3y-36=0|:3$$ $$y^{2}+y-12=0\Leftrightarrow$$ $$D=1+48=49\Leftrightarrow$$ $$\left\{\begin{matrix}y_{1}=\frac{-1+7}{2}=3\\y_{2}=\frac{-1-7}{2}=-4\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x_{1}=1+3=4\\x_{2}=1-4=-3\end{matrix}\right.$$

Задание 6502

Решите систему уравнений: $$\left\{\begin{matrix}(x+y)^{2}+2x=35-2y\\ (x-y)^{2}-2y=3-2x\end{matrix}\right.$$

Ответ: (-5;-2);(-3;-4);(1;4);(3;2)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     $$\left\{\begin{matrix}(x+y)^{2}+2x=35-2y\\(x-y)^{2}-2y=3-2x\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}(x+y)^{2}=35-2(x+y)\\(x-y)^{2}=3-2(x-y)\end{matrix}\right.$$

     Пусть x+y=a; x-y=6

     $$\left\{\begin{matrix}a^{2}=35-2a\\b^{2}=3-2b\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}a^{2}+2a-35=0\\b^{2}+2b-3=0\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\left[\begin{matrix}a=-7\\a=5\end{matrix}\right.\\\left[\begin{matrix}b=-3\\b=1\end{matrix}\right.\end{matrix}\right.$$

     Получаем четыре пары решений: (-7;-3);(-7;1);( 5;-3); (5;1)

     1) $$\left\{\begin{matrix}x+y=-7\\x-y=-3\end{matrix}\right.\Leftrightarrow$$ $$2x=-10\Leftrightarrow$$ $$x=-5\Leftrightarrow$$ $$y=-2$$

     2) $$\left\{\begin{matrix}x+y=-1\\x-y=1\end{matrix}\right.\Leftrightarrow$$ $$2x=-6\Leftrightarrow$$$$x=-3\Leftrightarrow$$ $$y=-4$$

     3) $$\left\{\begin{matrix}x+y=5\\x-y=-3\end{matrix}\right.\Leftrightarrow$$ $$2x=2\Leftrightarrow$$ $$x=1\Leftrightarrow$$ $$y=4$$

     4) $$\left\{\begin{matrix}x+y=5\\x=y=1\end{matrix}\right.\Leftrightarrow$$ $$2x=6\Leftrightarrow$$ $$x=3\Rightarrow$$ $$y=2$$

Задание 6549

Решите систему уравнений: $$\left\{\begin{matrix}x^{2}-xy+y^{2}=79\\ x-y=7\end{matrix}\right.$$

Ответ: (-3;-10);(10;3)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     $$\left\{\begin{matrix}x^{2}-xy+y^{2}=79\\x-y=7\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}(7+y)^{2}-(7+y)y+y^{2}=79\\x=7+y\end{matrix}\right.$$

     $$49+14y+y^{2}-7y-y^{2}+y^{2}-79=0\Leftrightarrow$$$$y^{2}+7y-30=0$$

     $$\left\{\begin{matrix}y_{1}+y_{2}=-7\\y_{1}y_{2}=-30\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}y_{1}=-10\\y_{2}=3\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x_{1}=7-10=-3\\x_{2}=7+3-10\end{matrix}\right.$$

Задание 6596

Решите систему уравнений $$\left\{\begin{matrix}xy+x-y=7\\x^{2}y-xy^{2}=6\end{matrix}\right.$$

Ответ: $$(-2;-3),(3,2);(3+\sqrt{10}; 3-+\sqrt{10});(3-\sqrt{10}; -3-\sqrt{10})$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\left\{\begin{matrix}xy+x-y=7\\x^{2}y-xy^{2}=6\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}xy+(x-y)=7\\xy(x-y)=6\end{matrix}\right.$$

     Пусть xy=a; x-y=b.

$$\left\{\begin{matrix}a+b=7\\ab=6\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}\left\{\begin{matrix}a=1\\b=6\end{matrix}\right. (1)\\\left\{\begin{matrix}a=6\\b=1\end{matrix}\right. (2)\end{matrix}\right.$$

     1) $$\left\{\begin{matrix}xy=1\\x-y=6\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}6y+y^{2}=1\\x=6+y\end{matrix}\right.$$

$$y^{2}+6y-1=0$$, $$D=36+4=40\Leftrightarrow$$ $$\left[\begin{matrix}y_{1}=\frac{-6+\sqrt{40}}{2}=-3+\sqrt{10}\\y_{2}=\frac{-6-\sqrt{40}}{2}=-3-\sqrt{10}\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}x_{1}=3+\sqrt{10}\\x_{2}=3-\sqrt{10}\end{matrix}\right.$$

     2)$$\left\{\begin{matrix}xy=6\\x-y=1\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}y+y^{2}-6=0\\x=1+y\end{matrix}\right.$$

$$y^{2}+y-6=0\Leftrightarrow$$ $$\left\{\begin{matrix}y_{1}+y_{2}=-1\\y_{1}y_{2}=-6\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}y_{1}=-3\\y_{2}=2\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}x_{1}=-2\\x_{2}=3\end{matrix}\right.$$

Задание 6711

Решите систему уравнений $$\left\{\begin{matrix}x+xy+y=5\\ x^{2}+xy+y^{2}=7\end{matrix}\right.$$

Ответ: (1;2); (2;1)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     $$\left\{\begin{matrix}x+xy+y=5\\x^{2}+xy+y^{2}=7\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}(x+y)+xy=5\\x^{2}+2xy+y^{2}-xy=7\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}(x+y)+xy=5\\(x+y)^{2}-xy=7\end{matrix}\right.$$

     Пусть x+y=a; xy=b

     $$\left\{\begin{matrix}a+b=5(1)\\a^{2}-b=7(2)\end{matrix}\right.\Leftrightarrow$$ $$b=5-a$$

     Сложим (1) и (2): $$a^{2}+a=12\Leftrightarrow$$ $$a^{2}+a-12=0$$

     $$\left\{\begin{matrix}a_{1}+a_{2}=-1\\a_{1}*a_{2}=-12\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}a_{1}=-4\\a_{2}=3\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}b=5-(-4)=9\\b=5-3=2\end{matrix}\right.$$

     $$\left[\begin{matrix}\left\{\begin{matrix}x+y=-4\\xy=9\end{matrix}\right.\\\left\{\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}x=4-y\\(-4-y)y=9\end{matrix}\right. (1)\\\left\{\begin{matrix}x=3+y\\(3-y)y=2\end{matrix}\right.(2)\end{matrix}\right.$$

     (1): $$-y^{2}-4y-9=0\Leftrightarrow$$ $$y^{2}+4y+9=0\Leftrightarrow$$ $$D=16-36<0\Rightarrow$$ решений нет

     (2): $$3y-y^{2}=2\Leftrightarrow$$ $$y^{2}-3y+2=0\Leftrightarrow$$ $$\left[\begin{matrix}y_{1}=1\\y_{2}=2\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}x_{1}=2\\x_{2}=1\end{matrix}\right.$$

Задание 6904

Решите систему уравнений $$\left\{\begin{matrix} x+4y=18\\x^{2}+y^{2}=20\end{matrix}\right.$$

Ответ: $$(\frac{2}{17};\frac{76}{77})$$ ; $$(2;4)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\left\{\begin{matrix}x+4y=18\\x^{2}+y^{2}=20\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x=18-4y\\(18-4y)^{2}+y^{2}=20\end{matrix}\right.$$

$$324-144y+16y^{2}+y^{2}-20=0\Leftrightarrow$$$$17y^{2}-144y+304=0$$

$$D=20736-20672=64$$

$$y_{1}=\frac{144+8}{34}=\frac{76}{77}\Rightarrow$$ $$x_{1}=18-4*\frac{76}{77}=\frac{2}{17}$$

$$y_{2}=\frac{144-8}{34}=4\Rightarrow$$ $$ x_{2}=18-4*4=2$$

Задание 7160

Решите систему уравнений $$\left\{\begin{matrix}(x-1)(y-1)=1\\x^2y+xy^2=16 \end{matrix}\right.$$

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\left\{\begin{matrix}(x-1)(y-1)=1\\x^{2}y+xy^{2}=16\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}xy-x*y+1=1\\xy(x+y)=16\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}xy-(x+y)=0\\xy(x+y)=16\end{matrix}\right.$$

   Пусть: $$xy=a$$ , $$x+y=b$$

$$\left\{\begin{matrix}x-b=0\\ab=16\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x=b\\a^{2}=16\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}b=\pm 4\\a=\pm 4\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}xy=4\\x+y=4\end{matrix}\right.\\\left\{\begin{matrix}xy=-4\\x+y=-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}4y-y^{2}-4=0\\x=4-y\end{matrix}\right.\\\left\{\begin{matrix}-4y-y^{2}+4=0\\x=-4-y\end{matrix}\right.\end{matrix}\right. \Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}y^{2}-4y+4=0\\x=4-y\end{matrix}\right.\\\left\{\begin{matrix}y^{2}+4y-4=0\\x=-4-y\end{matrix}\right.\end{matrix}\right.\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}y=2\\x=2\end{matrix}\right.\\\left\{\begin{matrix}y=-2+\sqrt{2}\\x=-2-\sqrt{2}\end{matrix}\right.\\\left\{\begin{matrix}y=-2-\sqrt{2}\\x=-2+\sqrt{2}\end{matrix}\right.\end{matrix}\right.$$

$$y^{2}+4y-4=0$$

$$D=16+16=32$$

$$y_{1,2}=\frac{-4\pm \sqrt{32}}{2}=-2\pm \sqrt{2}$$

 

Задание 9192

Решите систему уравнений:

$$\left\{\begin{matrix}5x^2+y^2=61\\15x^2+3y^2=61x \end{matrix}\right.$$

Ответ: (3;4);(3;-4)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9218

Решите систему уравнений: $$\left\{\begin{matrix}5x^2+y^2=36\\10x^2+2y^2=36x \end{matrix}\right.$$

Ответ: (2;4); (2;-4)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9708

Решите систему уравнений $$\left\{\begin{matrix} 4x^2-5x=y\\8x-10=y \end{matrix}\right.$$

Ответ: $$(1,25;0);(2;6)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9856

Решите систему уравнений: $$\left\{\begin{matrix} 6x^{2}+y=14\\12x^2-y=4 \end{matrix}\right.$$

Ответ: (-1;8); (1;8)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10371

Решите систему уравнений $$\left\{\begin{matrix} (x+y)^{2}=2y\\ (x+y)^{2}=2x \end{matrix}\right.$$

Ответ: (0;0);(0,5;0,5)
 

Задание 11557

Решите систему уравнений: $$\left\{\begin{matrix} 5x^{2}+y^{2}=61\\15x^{2}+3y^{2}=61x \end{matrix}\right.$$

Ответ: (3;4);(3;-4)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11579

Решите систему уравнений: $$\left\{\begin{matrix} 5x^{2}+y^{2}=36\\10x^{2}+2y^{2}=36x \end{matrix}\right.$$
Ответ: (2; 4); (2; -4)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11644

Решите систему уравнений $$\left\{\begin{matrix} x^{2}+y^{2}=10\\xy=3 \end{matrix}\right.$$

Ответ: (-3;-1);(-1;-3);(1;3);(3;1)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11923

Решите систему уравнений $$\left\{\begin{matrix} 6x^{2}+y=14\\ 12x^{2}-y=4 \end{matrix}\right.$$

Ответ: (-1;8);(1;8)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11944

Решите систему уравнений $$\left\{\begin{matrix} 4x^{2}-3x=y\\8x-6=y \end{matrix}\right.$$

Ответ: (2;10); (0,75; 0)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11978

Решите систему уравнений $$\left\{ \begin{array}{c} \left(x+4\right)\left(y-7\right)=0 \\ \frac{x-5}{x+y-12}=3 \end{array}\right.$$

Ответ: (-4;13)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11999

Решите систему уравнений $$\left\{ \begin{array}{c} \left(x-5\right)\left(y+2\right)=0 \\ \frac{y-4}{x+y-9}=2 \end{array} \right.$$

Ответ: (8;-2)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12062

Решите систему уравнений $$\left\{ \begin{array}{c} xy=-8 \\ x^2+y^2=65 \end{array} \right.$$

Ответ: (-1;8);(1;-8);(-8;1);(8;-1)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12083

Решите систему уравнений $$\left\{ \begin{array}{c} x^2+y^2=40 \\ xy=-12 \end{array} \right.$$

Ответ: (-2;6); (2;-6); (-6;2); (6;-2)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13068

Решите систему уравнений:

$$\left\{\begin{matrix} x^{2}+y^{2}=25\\ xy=12 \end{matrix}\right.$$

Ответ: (3;4); (4;3); (-3;-4); (-4;-3)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13091

Решите систему уравнений $$\left\{\begin{matrix} x^2+y^2=65\\xy=8 \end{matrix}\right.$$

Ответ: (1;8); (-1;-8); (8;1); (-8;-1)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13157

Решите систему уравнений $$\left\{\begin{matrix} (x-8)(y-9)=0\\\frac{y-5}{x+y-13}=4\end{matrix}\right.$$

Ответ: (5;9)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13179

Решите систему уравнений: $$\left\{\begin{matrix} (x-4)(y-7)=0\\ \frac{y-5}{x+y-9}=2 \end{matrix}\right.$$

Ответ: (3;7)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13221

Решите систему уравнений: $$\left\{\begin{matrix}y-x=-5\\x^2-2xy-y^2=17 \end{matrix}\right.$$

Ответ: (3;-2); (7;2)
 

Задание 13243

Решите систему уравнений $$\left\{\begin{matrix} (x+6y)^2=7y\\(x+6y)^2=7x \end{matrix}\right.$$

Ответ: (0;0); (1/7;1/7)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13605

Решите систему уравнений: $$\left\{\begin{matrix} (x-6)(y-5)=0\\ \frac{y-2}{x+y-8}=3 \end{matrix}\right.$$

Ответ: (4;5)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13839

Решите систему уравнений: $$\left\{\begin{matrix} 6x^2+y=14\\ 12x^2-y=4 \end{matrix}\right.$$

Ответ: (-1;8);(1;8)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13945

Решите систему уравнений $$\left\{\begin{matrix} 5x^2+y^2=61\\ 15x^2+3y^2=61x \end{matrix}\right.$$

Ответ: (3;4);(3;-4)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13967

Решите систему уравнений $$\left\{\begin{matrix} 5x^2+y^2=36\\10x^2+2y^2=36x \end{matrix}\right.$$

Ответ: (2;4);(2;-4)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 14087

Решите систему уравнений $$\left\{\begin{matrix} 6x^2+y=14\\ 12x^2-y=4 \end{matrix}\right.$$

Ответ: (-1;8);(1;8)
 

Задание 14109

Решите систему уравнений $$\left\{\begin{matrix} 4x^2-3x=y\\ 8x-6=y \end{matrix}\right.$$

Ответ: (2;10);(0,75;0)