ОГЭ
Задание 719
Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 18 пассажиров, равна 0,82. Вероятность того, что окажется меньше 10 пассажиров, равна 0,51. Найдите вероятность того, что число пассажиров будет от 10 до 17.
Задание 720
Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с вероятностью 0,5. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.
Задание 724
На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к выходу D |
Задание 725
Вероятность того, что в случайный момент времени температура тела здорового человека окажется ниже чем 36,8 °С, равна 0,81. Найдите вероятность того, что в случайный момент времени у здорового человека температура окажется 36,8 °С или выше.
Задание 726
При изготовлении подшипников диаметром 67 мм вероятность того, что диаметр будет отличаться от заданного не больше, чем на 0,01 мм, равна 0,965. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 66,99 мм или больше чем 67,01 мм.
Задание 729
При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последующем — 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98? В ответе укажите наименьшее необходимое количество выстрелов.
Задание 730
На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос по теме «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Задание 731
Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей — 1 очко, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.
Задание 732
В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода.
Задание 734
Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая — 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Задание 735
Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.
Задание 736
Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
Задание 737
Чтобы поступить в институт на специальность «Лингвистика», абитуриент должен набрать на ЕГЭ не менее 70 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Коммерция», нужно набрать не менее 70 баллов по каждому из трёх предметов — математика, русский язык и обществознание. Вероятность того, что абитуриент З. получит не менее 70 баллов по математике, равна 0,6, по русскому языку — 0,8, по иностранному языку — 0,7 и по обществознанию — 0,5. Найдите вероятность того, что З. сможет поступить хотя бы на одну из двух упомянутых специальностей.
Задание 738
На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Результат округлите до сотых.
Задание 739
По отзывам покупателей Иван Иванович оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,8. Вероятность того, что этот товар доставят из магазина Б, равна 0,9. Иван Иванович заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.
Задание 740
Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры.
Задание 741
Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.
Задание 742
Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,01. Найдите вероятность того, что случайно выбранная батарейка будет забракована системой контроля.
Задание 744
Стрелок стреляет по мишени один раз. В случае промаха стрелок делает второй выстрел по той же мишени. Вероятность попасть в мишень при одном выстреле равна 0,7. Найдите вероятность того, что мишень будет поражена (либо первым, либо вторым выстрелом).
Задание 2224
- Средний рост жителя города, в котором живет Даша, равен 170 см. Рост Даши 173 см. Какое из следующих утверждений верно?
Даша — самая высокая девушка в городе.
1.Обязательно найдется девушка ниже 170 см.
2.Обязательно найдется человек ростом менее 171 см.
3.Обязательно найдется человек ростом 167 см.
Задание 2225
Известно, что в некотором регионе вероятность того, что родившийся младенец окажется мальчиком, равна 0,512. В 2010 г. в этом регионе на 1000 родившихся младенцев в среднем пришлось 477 девочек. Насколько частота рождения девочек в 2010 г. в этом регионе отличается от вероятности этого события?
Задание 2227
На экзамене по геометрии школьнику достаётся одна задача из сборника. Вероятность того, что эта задача по теме «Углы», равна 0,1. Вероятность того, что это окажется задача по теме «Параллелограмм», равна 0,6. В сборнике нет задач, которые одновременно относятся к этим двум темам. Найдите вероятность того, что на экзамене школьнику достанется задача по одной из этих двух тем.
Задание 3050
Стрелок 4 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,7. Найдите вероятность того, что стрелок первый раз попал в мишень, а последние 3 раза промахнулся.
Вероятность промаха при выстреле равна 1-0,7=0,3 Следовательно, вероятность сначала попасть, а потом три раза промахнуться будет вычисляться как: 0,7*0,3*0,3*0,3 = 0,0189
Задание 3087
Вероятность того, что новая шариковая ручка пишет плохо (или не пишет), равна 0,15. Покупатель в магазине выбирает одну шариковую ручку. Найдите вероятность того, что эта ручка пишет хорошо.
То, что ручка пишет хорошо является противоположным событием тому, что пишет плохо. Сумма противоположных событий равна 1, поэтому наша вероятность будет равна : 1 - 0.15 = 0.85
Задание 3127
На полку в случайном порядке поставили три учебника: по биологии, алгебре и литературе. Найдите вероятность того, что учебники по биологии и алгебре стоят рядом. Результат округлите до сотых.
Возможные варианты:
БАЛ; | БЛА; | АБЛ; | АЛБ; | ЛАБ; | ЛБА |
$$\frac{4}{6}=\frac{2}{3}=0,(6)\approx0,67$$
Задание 3174
Вероятность того, что новая шариковая ручка пишет плохо (или не пишет), равна 0,21. Покупатель в магазине выбирает одну шариковую ручку. Найдите вероятность того, что эта ручка пишет хорошо.
Вероятность того, что пишет хорошо противоположна тому, что пишет плохо, следовательно P = 1 - 0,21=0,79
Задание 3220
Вася бросает одновременно две игральные кости. Найдите вероятность того, что сумма выпавших очков кратна четырём
Всего возможных вариантов будет 36. Рассмотрим их: Если на первой кости выпадет 1, то на второй может выпасть любое число от 1 до 6, и тогда сумма двух числе получится от 2 (1+1), до 7 (1+6).Среди полученных сумм на 4 делится только одно (сама 4) Если на первой кости выпадет 2, то на второй может выпасть любое число от 1 до 6, и тогда сумма двух числе получится от 3 (2+1), до 8 (2+6).Среди полученных сумм на 4 делится два числа (4 и 8) Аналогично для остальных: 3: от 4 до 9 - два числа 4: от 5 до 10 - одно число 5: от 6 до 11 - одно число 6: от 7 до 12 - два числа В итоге всего исходов 36, а кратных четырем: 1+2+2+1+1+2 = 9 Тогда вероятность: 9/36=0,25
Задание 3259
На полку в случайном порядке поставили три учебника: по истории, алгебре и геометрии. Найдите вероятность того, что учебники по алгебре и геометрии стоят рядом. Результат округлите до сотых.
история - И, алгебра - А, геометрия - Г. Тогда возможные варианты расположения:
ИАГ, ИГА, ГАИ, ГИА, АГИ, АИГ - всего шесть вариантов, из них, устраивающих условие что учебники, по алгебре и геометрии стоят рядом - четыре (жирным шрифтом).
$$P=\frac{n}{N}=\frac{4}{6}=\frac{2}{3}$$
Задание 3298
Стрелок 4 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,5. Найдите вероятность того, что стрелок первые 3 раза попал в мишени, а последний раз промахнулся.
Вероятность попадания 0,5 Вероятность промаха $$1-0,5=0,5$$ $$0,5\cdot0,5\cdot0,5\cdot0,5=0,0625$$
Задание 3393
Михаил выбирает случайное трёхзначное число. Найдите вероятность того, что оно делится на 98.
Всего трехзначных 900 чисел. На 98 делится 1 из 100 $$\Rightarrow$$ всего 9 чисел $$P=\frac{9}{900}=0,01$$
Задание 3829
В турнире чемпионов участвуют 6 футбольных клубов: «Барселона», «Ювентус», «Бавария», «Челси», «Порту» и «ПСЖ». Команды случайным образом распределяют на две группы по три команды. Какова вероятность того, что «Барселона» и «Бавария» окажутся в одной группе?
Пусть Барселона уже в группе, тогда мест в ней осталось 2, а команд претендует 5: $$P=\frac{2}{5}=0,4$$
Задание 4044
На экзамене по геометрии школьнику достаётся одна задача из сборника. Вероятность того, что эта задача по теме «Площадь», равна 0,15. Вероятность того, что это окажется задача по теме «Окружность», равна 0,32. В сборнике нет задач, которые одновременно относятся к этим двум темам. Найдите вероятность того, что на экзамене школьнику достанется задача по одной из этих двух тем.
$$P=P_{1}+P_{2}=0,15+0,32=0,47$$
Задание 4520
В коробке лежат 50 карточек с написанными на них числами от 1 до 50. На разных карточках числа разные. Какова вероятность того, что на наугад извлеченной карточке будет написано число, сумма цифр которого больше 10?
Число,сумма цифр, в которых больше 10: 29; 38; 39; 47; 48; 49 - всего 6. $$P=\frac{6}{50}=0,12$$
Задание 5112
Ученики 9 «Б» класса тянут жребий. Андрей держит три спички, одну короткую и две длинных. Кто вытянет короткую спичку — дежурит. Первым тянет Борис, вторым - Вадим, а Андрею остается третья. С какой вероятностью Андрей будет дежурить, если Борис вытянул длинную спичку?
Раз Борис уже вытянул длинную спичку, то осталась одна короткая, одна длинная. Следовательно, вероятность, что Вадим вытянет длинную, и тогда Андрей будет дежурить составляет: $$P=\frac{1}{2}=0,5$$
Задание 5257
В турнире участвуют 6 футбольных клубов: «Витязь», «Парнас», «Сириус», «Бекас», «Нептун» и «Буревестник». Команды случайным образом распределяют на две группы по три команды. Какова вероятность того, что «Парнас» и «Сириус» окажутся в одной группе?
Групп 2, команд 6, значит в одной группе будет 3 команды. Пусть "Парнас" уже находится в какой - то группе, тогда свободных мест в ней остается 2, а команд остается 5. Следовательно, вероятность, что "Сириус" попадет в эту же группу: $$P=\frac{2}{5}=0,4$$
Задание 5400
На экзамене по геометрии школьнику достаётся одна задача из сборника. Вероятность того, что эта задача по теме «Углы», равна 0,35. Вероятность того, что это окажется задача по теме «Треугольник», равна 0,3. В сборнике нет задач, которые одновременно относятся к этим двум темам. Найдите вероятность того, что на экзамене школьнику достанется задача по одной из этих двух тем.
Для того, чтобы найти вероятность того, что достанется задача по одной из двух тем, необходимо сложить вероятности получения каждой темы по отдельности: $$0.3+0.35=0.65$$
Задание 6151
Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали идти. Найдите вероятность того, что часовая стрелка остановилась, достигнув отметки 2, но не дойдя до отметки 5.
С 2 до 5 сектор составляет $$\frac{5-2}{12}$$ круга. Т.е. и вероятность будет $$\frac{3}{12}=0,25$$
Задание 6294
На одной тарелке 12 пирожков, 4 из которых с капустой, а на другой тарелке 8 пирожков, 6 из которых с капустой. Из каждой тарелки взяли по одному пирожку. Какова вероятность того, что оба пирожка с капустой?
Вероятность взять с капустой из первой :$$P_{1}=\frac{4}{12}=\frac{1}{3}$$ Из второй :$$P_{2}=\frac{6}{8}=\frac{3}{4}$$ Общая вероятность $$P=P_{1}*P_{2}=$$$$\frac{1}{3}*\frac{3}{4}=0,25$$
Задание 6341
Аня выбирает трехзначное число. Найдите вероятность того, что оно делится на 11
Количество чисел до 999 делящихся на 11: $$999*11=90,(81)\Rightarrow 90$$ До 99 - 99:11=9 Всего трехзначных чисел: 999-99=900 $$P=\frac{90-9}{900}=\frac{81}{900}=0,09$$
Задание 6435
Вероятность того, что новая шариковая ручка пишет плохо (или не пишет), равна 0,09. Покупатель в магазине выбирает одну шариковую ручку. Найдите вероятность того, что эта ручка пишет хорошо.
Вероятность того, что пишет хорошо: $$P=1-0,09=0,91$$ (как противоположное событие)
Задание 6490
Антон бросает одновременно две игральные кости. Найдите вероятность того, что сумма выпавших очков кратна трём.
Общее количество возможных комбинаций из 2 чисел кубиков : $$6^{2}=36=N$$
Из них тех, что в сумме кратных 3 : 1 и 2;1 и 5; 2 и 1;2 и 4; 3 и 3; 3 и 6; 4 и 2; 4 и 5; 5 и 1;5 и 4;6 и 3;6 и 6 - всего 12 комбинаций =n (можно рассуждать: каждая тройка комбинаций даёт одну , кратную 3 ; всего троек \frac{36}{3}=12, следовательно, кратных трём тоже 12)
$$P=\frac{n}{N}=\frac{12}{36}=\frac{1}{3}$$
Задание 6537
На полку в случайном порядке поставили три учебника: по истории, литературе и географии. Найдите вероятность того, что учебники по литературе и географии стоят рядом. Результат округлите до сотых.
И-история, Л-литература , Г-география: Все возможные расположения : ИЛГ; ИГЛ; ГИЛ; ГЛИ; ЛГИ; ЛИГ. Л и Г рядом в 4 из 6 случаев. Тогда : $$P=\frac{4}{6}\approx 0,67$$
Задание 6632
Игральную кость бросают дважды. Найдите вероятность того, что наибольшее из двух выпавших чисел равно 5.
Общее количество исходов: $$6^{2}=36=N$$
Исходы, где наибольшее 5 (первое число - первая кость, второе число - вторая кость): 15;25;35;45;55;54;53;52;51 - 9 исходов $$=n$$
Тогда вероятность: $$P=\frac{n}{N}=\frac{9}{36}=0,25$$
Задание 6773
Анна выбирает случайное трёхзначное число. Найдите вероятность того, что оно делится на 99.
Всего трехзначных чисел 999-99=900. Из них делится на 99 одно на каждые 100$$\Rightarrow$$ 9 чисел, тогда вероятность $$P=\frac{9}{900}=0,01$$.
Задание 6891
В турнире чемпионов участвуют 6 футбольных клубов: «Интер», «Лион», «Ювентус», «Аякс», «Рома» и «Тоттенхем». Команды случайным образом распределяют на две группы по три команды. Какова вероятность того, что «Интер» и «Ювентус» окажутся в одной группе?
Пусть Ювентус уже находится в группе . Тогда свободных мест в ней остается 2. При этом команд 5. Следовательно, вероятность , что Интер попадет в эту же группу: $$P=\frac{2}{5}=0,4$$
Задание 6988
На экзамене по геометрии школьнику достаётся одна задача из сборника. Вероятность того, что эта задача по теме «Площадь», равна 0,24. Вероятность того, что это окажется задача по теме «Окружность», равна 0,36. В сборнике нет задач, которые одновременно относятся к этим двум темам. Найдите вероятность того, что на экзамене школьнику достанется задача по одной из этих двух тем.
Вероятность того, что покупается одна из этих тем: 0,24+0,36=0,6
Задание 7456
За круглый стол на 9 стульев в случайном порядке рассаживаются 7 мальчиков и 2 девочки. Найдите вероятность того, что девочки окажутся на соседних местах.
Пусть одна из девочек заняла какой-либо стул. Рядом с ним находятся два стула. При этом осталась одна девочка и семь мальчиков следовательно, вероятность того, что девочка займет один из стульев рядом : $$P=\frac{1}{8}=0,125$$ (1 девочка из 8 детей). Но так как стульев два, то вероятность того, что девочки будут сидеть рядом: $$0,125*2=0,25$$
Задание 7842
Вероятность того, что новая шариковая ручка пишет плохо (или не пишет), равна 0,21. Покупатель в магазине выбирает одну шариковую ручку. Найдите вероятность того, что эта ручка пишет хорошо.
Событие "ручка пишет хорошо", противоположно событию "ручка пишет плохо". Следовательно, сумма вероятностей данных событие составляет 1. Тогда вероятность того, что ручка пишет хорошо: $$1-0,21=0,79$$
Задание 8384
В урне 7 белых и 4 чёрных шара. Из урны вынули один шар и, не глядя, отложили в сторону. После этого из урны взяли ещё один шар. Он оказался белым. Найдите вероятность, что первый шар, отложенный в сторону, – тоже белый.
Пусть $$P(H_{1})$$ - вероятность вытянуть первым белый шар (без учета, что уже вытянут вторым белый), тогда $$P(H_{1})=\frac{7}{11}$$
Пусть $$P(H_{2})$$ - вероятность вытянуть первым черный шар (без учета, что уже вытянут вторым белый), тогда $$P(H_{2})=\frac{4}{11}$$
Пусть $$P(A/H_{1})$$ - вероятность вытянуть вторым белый шар после первого белого, тогда $$P(A/H_{1})=\frac{6}{10}$$
Пусть $$P(A/H_{2})$$ - вероятность вытянуть вторым белый шар после первого черного, тогда $$P(A/H_{2})=\frac{7}{10}$$
Тогда вероятность вытянуть вторым белый шар $$P(A)=P(H_{1})*P(A/H_{1})+P(H_{2})*P(A/H_{2})=$$$$\frac{7}{11}*\frac{6}{10}+\frac{4}{11}*\frac{7}{10}=\frac{7}{11}$$
По формуле Байеса, вероятность получить белый шар при первом вытягивании (при учете, что вторым точно был вытянут белый) составит: $$P(H_{1}/A)=P(H_{1})*P(A/H_{1}):P(A)=\frac{\frac{7}{11}*\frac{6}{10}}{\frac{7}{11}}=0,6$$
Задание 8814
Вероятность того, что новый фен прослужит больше года, равна 0,98. Вероятность того, что он прослужит больше двух лет, равна 0,86. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.
Задание 8841
Вероятность того, что новый утюг прослужит больше года, равна 0,94. Вероятность того, что он прослужит больше двух лет, равна 0,85. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.
Вероятность того, что фен прослужит больше года, равная 0,97, (пусть это будет событие A) равна вероятности того, что он прослужит или больше двух лет (событие B) или больше от 1 года до двух лет (событие C): $$P(A)=P(B)+P(C)$$, учитывая, что события A, B, C независимы между собой.
Отсюда получаем вероятность события C: $$P(C)=P(a)-P(B)=0,97-0,88=0,09$$
Задание 9818
На экзамене по геометрии школьнику достаётся задача из сборника. Вероятность того, что эта задача по теме «Углы», равна 0,1. Вероятность того, что это окажется задача по теме «Параллелограмм», равна 0,6. В сборнике нет задач, которые одновременно относятся к этим двум темам. Найдите вероятность того, что на экзамене школьнику достанется задача по одной из этих двух тем.
Задание 10293
На экзамене по геометрии школьнику достаётся одна задача из сборника. Вероятность того, что эта задача по теме «Окружность», равна 0,45. Вероятность того, что это окажется задача по теме «Площадь», равна 0,25. В сборнике нет задач, которые одновременно относятся к этим двум темам. Найдите вероятность того, что на экзамене школьнику достанется задача по одной из этих двух тем.
Задание 10947
Стрелок три раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что стрелок первые два раза попал в мишень, а последний раз промахнулся.