Перейти к основному содержанию

ОГЭ

(C6) Геометрическая задача повышенной сложности

Треугольники

Задание 3020

В треугольнике АВС из вершин А и В проведены отрезки АК и ВЕ, причем точки К и Е лежат на сторонах ВС и АС соответственно. Отрезки АК и ВЕ пересекаются в точке М так, что АМ : МК = 5, ВМ : МЕ = 2. Найдите отношения АЕ : ЕС и ВК : КС.

Ответ: 1,5;3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 3144

Точки D и Е расположены на стороне АС треугольника АВС. Прямые ВD и ВЕ разбивают медиану АМ треугольника АВС на три равных отрезка. Найдите площадь треугольника BDE, если площадь треугольника ABC равна 1.

Ответ: 0,3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Текстовое решение временно недоступно, вы можете найти его в видео в начале варианта

Задание 2973

Прямая пересекает стороны АВ и АС треугольника АВС в точках Р и М соответственно. Найдите отношение площади треугольника АМР к площади четырехугольника МСВР, если АР : РВ = 5 : 4, АМ : МС = 3 : 5.

Ответ: $$\frac{5}{19}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$S_{ABC}=\frac{1}{2}AB\cdot AC\cdot \sin A=\frac{1}{2}9x\cdot 8y\cdot \sin \alpha =36xy\sin \alpha$$ 2) $$S_{APM}=\frac{1}{2}AP\cdot AM\cdot \sin A=\frac{1}{2}5x\cdot 3y\cdot \sin \alpha =7,5xy\sin \alpha$$ 3) $$S_{PBCM}=S_{ABC}-S_{APM}=36xy\sin \alpha-7,5xy\sin \alpha=28,5xy\sin \alpha$$ 4) $$\frac{S_{AMP}}{S_{MCBP}}=\frac{7,5xy\sin \alpha}{28,5xy\sin \alpha}=\frac{75}{285}=\frac{15}{57}=\frac{5}{19}$$

Задание 3315

В равностороннем треугольнике ABC точка М делит основание АС на отрезки 5 и 3. В треугольники АВМ и СВМ вписаны окружности. Найдите площадь фигуры, вершинами которой являются центры окружностей и точки их касания со стороной ВМ.

Ответ: $$\frac{5\sqrt{3}}{6}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 3569

В равностороннем треугольнике АВС высота равна $$\sqrt{3}$$. На стороне АВ взята точка М, такая, что АМ:МВ = 1:3. На стороне ВС взята точка N, такая, что ВN:NС = 3:5.Найдите площадь четырехугольника АМNС.

Ответ: $$\frac{23\sqrt{3}}{32}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) из $$\bigtriangleup AHB$$: $$\sin A=\frac{BH}{AB}$$ $$\Rightarrow$$

$$AB=\frac{BH}{\sin A}=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}=2$$

2) $$MB=\frac{3}{4}AB$$; $$BN=\frac{3}{8}BC$$ $$\Rightarrow$$

$$S_{BMN}=\frac{1}{2}\cdot\frac{3}{4}AB\cdot\frac{3}{8}BC\cdot\sin B=\frac{9}{32}\cdot\frac{1}{2}AB\cdot BC\cdot\sin B=\frac{9}{32}S_{ABC}$$

3) $$S_{ABC}=\frac{1}{2}\cdot AB\cdot BC\cdot\sin B=\frac{1}{2}\cdot2\cdot2\cdot\frac{\sqrt{3}}{2}=\sqrt{3}$$ $$\Rightarrow$$

$$S_{AMNC}=S_{ABC}-S_{BMN}=\frac{23}{32}S_{ABC}=\frac{23}{32}\cdot\sqrt{3}$$

Задание 4331

Через центр О вписанной в треугольник АВС полуокружности проведена прямая, параллельная стороне ВС и пересекающая стороны АВ и АС соответственно в точках М и N. Периметр треугольника АМN равен 3, ВС = 1, а отрезок АО в 3 раза больше радиуса вписанной в треугольник АВС окружности. Найдите площадь треугольника АВС.

Ответ: $$\frac{1}{\sqrt{2}}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$S_{ABC}=p\cdot r=\frac{AB+BC+AC}{2}\cdot r$$; $$P_{AMN}=AM+MN+AN$$; BO - биссетриса $$\Rightarrow$$ $$MO\parallel BO$$ $$\Rightarrow$$ $$\angle MOB=\angle OBH=\angle OBM$$ $$\Rightarrow$$ $$\bigtriangleup MBO$$ - равнобедренный $$\Rightarrow$$ $$MB=MO$$. Аналогично: $$ON=NC$$ $$\Rightarrow$$ $$MN=MO+ON=MN+NC$$; $$AB=AM+MB$$; $$AC=AN+NC$$; $$P_{AMN}=AM+AN+NO+OM=AM+AN+NC+MB=AB+AC=3$$

Из $$\bigtriangleup AOP$$: $$AP=\sqrt{AO^{2}-OP^{2}}=\sqrt{(3r)^{2}-r^{2}}=\sqrt{8}r$$; $$S_{ABC}=\frac{AB+BC+AC}{2}\cdot r=\frac{3+1}{2}\cdot r=2r$$; $$AP=\frac{AB+AC-BC}{2}=\frac{3-1}{2}=1$$ $$\Rightarrow$$ $$AP=1=\sqrt{8}r$$ $$\Rightarrow$$ $$r=\frac{1}{\sqrt{8}}$$; $$S_{ABC}=2\cdot\frac{1}{\sqrt{8}}=\frac{1}{\sqrt{2}}$$

Задание 4654

В прямоугольном треугольнике АВС точки D и E лежат соответственно на катетах BC и AC так, что CD = CE = 1. Точка M - точка пересечения отрезков AD и BE Площадь треугольника BMD больше площади треугольника AME на 1/2. Известно, что AD = $$\sqrt{10}$$ . Найдите длину гипотенузы AB.

Ответ: 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Построим чертеж:

1)CE = 1, пусть AE = x. Тогда из треугольника ACD по теореме Пифагора:
$$AC^{2}+CD^{2}=AD^{2}\Leftrightarrow $$$$(1+x)^{2}+1=10\Leftrightarrow $$$$(1+x)^{2}=9\Leftrightarrow $$$$1+x=3$$
То есть AC=3.
2)$$S_{BMD}-S_{AEM}=\frac{1}{2}$$ Если мы добавим и вычтем $$S_{EMDC}$$ то получим следующее:
$$S_{BMD}+S_{EMDC}-S_{AEM}-S_{EMDC}=\frac{1}{2}$$
$$S_{BEC}-S_{ACD}=\frac{1}{2}$$
3) Пусть BD = y, тогда:
$$S_{BEC}=\frac{1}{2}*1*(1+y)=\frac{1+y}{2}$$
$$S_{ACD}=\frac{1}{2}*1*3=\frac{3}{2}$$
C учетом пункта 2:
$$\frac{1+y}{2}-\frac{3}{2}=\frac{1}{2}\Leftrightarrow $$$$(1+y)-3=1\Leftrightarrow $$$$1+y=4$$
То есть CB=4
4)По теореме Пифагора из треугольника ABC:
$$AB=\sqrt{AC^{2}+CB^{2}}=5$$

Задание 4804

В треугольнике, величина одного из углов которого равна разности величин двух других его углов, длина меньшей стороны равна 1, а сумма площадь квадратов, построенных на двух других сторонах, в два раза больше площади описанного около треугольника круга. Найдите длину большей стороны треугольника.

Ответ: $$x=\sqrt{\frac{2}{4-\pi}}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Построим рисунок:

1) Пусть меньший угол $$\alpha$$, а жва других $$x$$ и $$y$$. По условию задания меньший равен равности двух сотавшихся, а по свойству треугольника разность 180 и меньшего дает сумму оставшихся. Тогда:

$$\left\{\begin{matrix} \alpha= x-y\\180-\alpha =x+y \end{matrix}\right.$$

Сложим оба уравнения системы:

$$\Rightarrow 180=2x \Leftrightarrow x=90$$

То есть мы получили прямоугольный треугольник. Построим новый чертеж по условию задачи и с учетом полученного решения:

2) Пусть $$AC = x ; S_{AEDC}=S_{1}; S_{BCIH}=S_{2}$$. Тогда $$S_{1}=x^{2} ;$$$$ BC=\sqrt{x^{2}-1} \Rightarrow S_{2}=x^{2}-1 \Rightarrow $$$$S_{1}+S_{2}=2x^{2}-1$$

3)Пусть площадь окружности $$S_{3} ; R$$-радиус окружности.Радиус описанной окружотсти вокруг прямоугольного треугольника равен полвине его гипотенузы. $$R=\frac{AC}{2}=\frac{x}{2}$$. Тогда : $$S_{3}=\pi R^{2}=\pi \frac{x^{2}}{4}$$. Приравняем площади: $$2x^{2}-1=2*\pi \frac{x^{2}}{4} \Rightarrow $$$$4x^{2}-2=\pi x^{2} \Rightarrow $$$$x^{2}(4-\pi)=2 \Rightarrow $$$$x=\sqrt{\frac{2}{4-\pi}}$$

Задание 4872

В равностороннем треугольнике АВС из вершин А и В проведена окружность с центром в точке О, проходящая через точку пересечения медиан треугольника АВС и касающаяся его стороны ВС в её середине D. Из точки А проведена прямая, касающаяся этой окружности в точке Е так, что градусная мера угла ВАЕ меньше $$30^{\circ}$$. Найдите отношение площадей треугольника АВЕ и четырехугольника ВЕОD

Ответ: $$\frac{6(13-5\sqrt{2})}{17}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
Пусть сторона треугольника равна а: тогда по т.Пифагора из треугольника ADC: $$AD=\frac{\sqrt{3}}{2}a$$
1) По свойству медиан треугольника: $$AM=\frac{2}{3}AD=\frac{\sqrt{3}a}{3};$$$$MD=\frac{1}{3}AD=\frac{\sqrt{3}a}{6}$$
2)$$OM=OD=OE=\frac{1}{2}MD=\frac{\sqrt{3}}{12}$$
3)По свойству касательной $$OE \perp AQ$$, тогда $$\bigtriangleup AOE \sim \bigtriangleup ADQ$$ ; $$AO=AM+MO=\frac{5\sqrt{a}}{12}$$
Можем записать отношение соответственных сторон:$$\frac{AD}{AE}=\frac{AQ}{AO}=\frac{QD}{EO}(1)$$
По свойству касательной и секущей: $$AE^{2}=AM*AD=\frac{a\sqrt{2}}{2}$$
4) Используя равенство под номером (1) получаем: $$AQ=\frac{AD*AO}{AE}=\frac{5\sqrt{2}a}{8}$$
$$QD=\frac{AD*EO}{AE}=\frac{\sqrt{2}a}{8}$$
5) Треугольники ABE и ABQ имеют общий угол и стороны являются продолжением друг друга, тогда: $$\frac{S_{ABE}}{S_{ABQ}}=\frac{AB*AE}{AB*AQ}=\frac{4}{5}$$
$$S_{ABD}=\frac{1}{2}S_{ABC}=\frac{\sqrt{3}a^{2}}{8}$$
$$S_{ABQ}=\frac{BQ}{BD}S_{ABD}=\frac{\frac{1}{2}a-\frac{\sqrt{2}a}{8}}{\frac{1}{2}a}*\frac{\sqrt{3}a^{2}}{8}=$$$$\frac{\sqrt{3}(4-\sqrt{2})a^{2}}{32}$$
$$S_{ABE}=\frac{4}{5}*\frac{\sqrt{3}(4-\sqrt{2})a^{2}}{32}=$$$$\frac{\sqrt{3}(4-\sqrt{2})a^{2}}{40}$$
6)$$S_{BDOE}=S_{BEQ}+S_{QDOE}=$$$$\frac{1}{5}S_{ABQ}+2S_{QDO}=$$$$\frac{1}{5}*\frac{\sqrt{3}(4-\sqrt{2})a^{2}}{32}+2*\frac{1}{2}*\frac{\sqrt{3}a}{12}*\frac{\sqrt{2}a}{8}=$$$$\frac{a^{2}\sqrt{3}(6-\sqrt{2})}{240}$$
7)$$\frac{S_{ABE}}{S_{BEOD}}=\frac{\frac{\sqrt{3}(4-\sqrt{2})a^{2}}{40}}{\frac{a^{2}\sqrt{3}(6-\sqrt{2})}{240}}=$$$$\frac{6(4-\sqrt{2})}{6-\sqrt{2}}=$$$$\frac{6(13-5\sqrt{2})}{17}$$

Задание 4946

 На продолжении стороны ВС треугольника АВС за точку В расположена точка Е так, что биссектрисы углов АЕС и АВС пересекаются в точке К, лежащей на стороне АС. Длина отрезка ВЕ = 1, длина отрезка ВС равна 2, градусная мера угла ЕКВ равна $$30^{\circ}$$. Найдите длину стороны АВ. 

Ответ: $$\frac{2}{\sqrt{7}}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
1)Пусть $$EA=a$$. По свойству биссектрис из треугольника EAC: $$\frac{EC}{EA}=\frac{CK}{KA}$$ и треугольника  ABC: $$\frac{BC}{BA}=\frac{CK}{KA}$$ $$\Rightarrow$$ $$\frac{EC}{EA}=\frac{BC}{BA}$$;  $$\Rightarrow$$ $$AB=\frac{EA\cdot BC}{EC}=\frac{a\cdot2}{3}=\frac{2}{3}a$$
2) $$\angle KBA=\alpha=\angle CBK\Rightarrow$$$$\angle KBE=180^{\circ}-\alpha\Rightarrow$$$$\angle BEK=180-(30+180-\alpha)=\alpha-30=\angle KEA\Rightarrow$$$$\angle BEA=2\alpha-60^{\circ}$$
$$\angle CBE=180-2\alpha\Rightarrow$$$$\angle BCE=180-(2\alpha-60+180-2\alpha)=60^{\circ}$$
3)По теореме косинусов из треугольника BCE: $$\sqrt{1}=\sqrt{(\frac{2}{3}a)^{2}+a^{2}-2\cdot\frac{2}{3}a\cdot a\cdot\cos60}\Rightarrow$$$$1=\frac{4}{9}a^{2}+a^{2}-\frac{4}{3}a^{2}\cdot\frac{1}{2}\Rightarrow$$$$1=\frac{13}{5}a^{2}-\frac{6}{9}a^{2}\Rightarrow$$$$\frac{7}{9}a^{2}=1\Rightarrow$$$$a^{2}=\frac{9}{7}$$$$a=\frac{3}{\sqrt{7}}\Rightarrow$$$$AB=\frac{2}{3}\cdot\frac{3}{\sqrt{7}}=\frac{2}{\sqrt{7}}$$

Задание 5089

Дан треугольник KLM. Через точки K и L проведена окружность, центр которой лежит на высоте LF, опущенной на сторону KM. Известно, что точка F лежит на стороне KM. Найдите площадь круга, ограниченного этой окружностью, если $$KL=1$$, $$KM=\frac{\sqrt{3}}{2}$$, $$FM=\frac{\sqrt{3}}{6}$$

Ответ: $$\frac{3}{8}\pi$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$KF=KM-FM=\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{6}=\frac{\sqrt{3}}{3}$$

2) $$\bigtriangleup LKF$$: $$LF=\sqrt{KL^{2}-LF^{2}}=\sqrt{1^{2}-\frac{3}{9}}=\frac{\sqrt{6}}{3}$$;

3) $$\bigtriangleup LKN$$ - прямоугольный, т.к. опирается на диаметр $$\Rightarrow$$ $$\bigtriangleup KLF\sim\bigtriangleup LKN$$ (по 2 углам) $$\Rightarrow$$ $$\frac{KL}{LN}=\frac{LF}{KL}$$ $$\Rightarrow$$ $$KL^{2}=LN\cdot LF$$ $$\Rightarrow$$ $$KL^{2}=LF(LF+FN)$$, пусть $$FN=x$$

$$1^{2}=\frac{\sqrt{6}}{3}(\frac{\sqrt{6}}{3}+x)$$; $$1-\frac{6}{9}=\frac{\sqrt{6}}{3}x$$; $$\Rightarrow$$ $$x=\frac{1}{3}\cdot\frac{3}{\sqrt{6}}=\frac{1}{\sqrt{6}}$$; $$LN=LF+FN=\frac{\sqrt{6}}{3}+\frac{1}{\sqrt{6}}=\frac{2\sqrt{6}}{6}+\frac{\sqrt{6}}{6}=$$ $$\frac{3\sqrt{6}}{6}=\frac{\sqrt{6}}{2}$$

4) $$R=\frac{1}{2}LN$$ (радиус описанной вокруг прямоугольного треугольника окружности равен половине гипотенузы) $$\Rightarrow$$ $$R=\frac{\sqrt{6}}{4}$$

5) $$S=\pi R^{2}=\frac{6}{16}\pi=\frac{3}{8}\pi$$

Задание 5176

В прямоугольном треугольнике ABC проведена биссектриса ВЕ, а на гипотенузе ВС взята точка М так, что $$EM \perp BE$$. Найдите площадь треугольника АВС, если СМ=1, СЕ=2..

Ответ: 3,84
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
1) Пусть $$\angle ABE = \angle EBM = \alpha$$. Тогда из треугольника ABE $$\angle BEA = 90- \alpha$$. Тогда $$\angle MEC = 180 - (90 - \alpha) - 90 = \alpha$$ (как смежный с $$\angle AEM$$)
2)$$\angle C$$ - общий, тогда треугольники BEC и EMC подобны по двум углам. Тогда: $$\frac{MC}{EC}=\frac{EC}{BC}$$
Пусть BM=x, тогда BC = x+1:
$$\frac{1}{2}=\frac{2}{x+1}$$, следовательно $$x=3$$
3) По свойству биссектрис:
$$\frac{AB}{BC}=\frac{AE}{EC}$$
Пусть AB=a ; AE=b, тогда:
$$\frac{a}{4}=\frac{b}{2}$$, следовательно, $$a=2b$$
4)По теореме Пифагора из треугольника ABC:
$$(2b)^{2}+(b+2)^{2}=4^{2}$$
$$5b^{2}+4b-12=0$$
$$b=1,2$$
Тогда $$S_{ABC}=\frac{1}{2}*2*1,2*(1,2+2)=3,84$$

Задание 5226

 В треугольнике АВС точка D на стороне ВС и точка F на стороне АС расположены так, что ВD:DC=3:2, AF:FC=3:4. Отрезки AD и BF пересекаются в точке Р. Найдите отношение АР:PD. 

Ответ: $$\frac{5}{4}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

ВD:DC=3:2, пусть BD=3x, тогда DC=2x, а BC=5x. AF:FC=3:4, пусть AF=3y, тогда FC=4y. По теореме Менелая для треугольника BFC: $$\frac{AP}{PD}*\frac{BD}{BC}*\frac{CF}{AF}=1\Leftrightarrow$$$$\frac{AP}{PD}*\frac{3x}{5x}*\frac{4y}{3y}=1\Leftrightarrow$$$$\frac{AP}{PD}=\frac{5}{4}$$

Задание 5274

Сторона равностороннего треугольника АВС равна 14. Через его центр проведена прямая $$l$$, пересекающая сторону ВС и проходящая на расстоянии $$\sqrt{7}$$ от середины стороны АВ. В каком отношении прямая $$l$$ делит сторону ВС? 

Ответ: $$\frac{3}{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
1) $$CH$$ - медиана, высота $$\Rightarrow$$ $$CH=AB\cdot\sin60^{\circ}=7\sqrt{3}$$; $$OH=\frac{1}{3}CH=\frac{7\sqrt{3}}{3}$$
2)  из $$\bigtriangleup HKO$$: $$\sin HOK=\frac{HK}{OH}=\frac{\sqrt{7}}{7\sqrt{3}}=\sqrt{\frac{3}{7}}$$
3) $$OC=\frac{2}{3}CH=\frac{14\sqrt{3}}{3}$$; $$\angle OCM=30^{\circ}$$; $$\bigtriangleup MOC$$ по т. синусов: $$\frac{OM}{\sin OCM}=\frac{MC}{\sin MOC}$$; $$OM=\frac{MC\cdot\sin OCM}{\sin MOC}=\frac{MC\cdot\sqrt{7}}{2\sqrt{3}}$$; $$\cos HOK=\sqrt{1-\sin^{2}HOK}=\frac{2}{\sqrt{7}}$$;
Пусть $$MC=x$$, тогда $$OM=\frac{x\sqrt{7}}{2\sqrt{3}}$$
4) По т. косинусов: $$MC^{2}=OM^{2}+OC^{2}-2OM\cdot MC\cos MOC$$; $$x^{2}=\frac{7x^{2}}{4\cdot3}+\frac{196\cdot3}{9}-\frac{2\cdot\sqrt{7}x\cdot14\sqrt{3}\cdot2}{2\sqrt{3}\cdot3\cdot\sqrt{7}}$$;
$$x^{2}=\frac{7x^{2}}{12}+\frac{196}{3}-\frac{28x}{3}$$ $$|\cdot12$$
$$5x^{2}+112x-784=0$$; $$D=12544+15680=168^{2}$$; $$x_{1}=\frac{-112+168}{10}=5,6$$; $$x_{2}<0$$
$$MC=5,6$$ $$\Rightarrow$$ $$BM=14-5,6=8,4$$; $$\frac{BM}{MC}=\frac{8,4}{5,6}=\frac{3}{2}$$

Задание 5417

В треугольнике АВС, площадь которого равна S, точка М середина стороны ВС, точка N на продолжении стороны АВ и точка К на продолжении стороны АС выбраны так, что AN = ½ AB, CK = ½ AC. Найти площадь треугольника MNK.

Ответ: $$\frac{5S}{4}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1)$$S_{MCR}=\frac{1}{4}*S$$

2)Пусть $$MR\left | \right |AC\Rightarrow AR=RB$$(RM-средняя линия)$$\Rightarrow AR=0,5*y=NA\Rightarrow AL$$-средняя линия $$\Rightarrow NL=LM\Rightarrow AL=\frac{1}{2}*RM=\frac{1}{4}*AC=\frac{1}{4}x ; LC=\frac{3}{4}x ;$$

3)$$S_{NMK}=S_{MCK}+S_{MCL}+S_{NLK}$$ $$S_{MCL}=\frac{1}{2}*\frac{3}{4}*S=\frac{3}{8}*S\Rightarrow S_{LMK}=\frac{3}{8}*S=\frac{5*S}{8};$$

4)KL-медиана$$\Rightarrow S_{MLK}=S_{KLN}=\frac{5*S}{8};$$

5) $$S_{MNK}=2*\frac{5*S}{8}=\frac{109}{8}=\frac{5S}{4};$$