Перейти к основному содержанию

ОГЭ

Треугольники, четырёхугольники, многоугольники и их элементы

Углы

Задание 1879

Бис­сек­три­сы углов N и M тре­уголь­ни­ка  MNP  пе­ре­се­ка­ют­ся в точке  A. Най­ди­те $$\angle NAM$$, если $$\angle N=84^{\circ}$$, а $$\angle M=42^{\circ}$$.

Ответ: 117
Скрыть

По свойству биссетрис: $$\angle NMB=\frac{1}{2}\angle M=21^{\circ}$$ и $$\angle MNK=\frac{1}{2}\angle N=42^{\circ}$$

По свойству суммы углов треугольника из треугольника NAM: $$\angle NAM=180-\angle NMB -\angle MNK=117^{\circ}$$

Задание 1882

На плос­ко­сти даны че­ты­ре пря­мые. Из­вест­но, что $$\angle 1=120^{\circ}$$, $$\angle 2=60^{\circ}$$, $$\angle 3=55^{\circ}$$. Най­ди­те $$\angle 4$$. Ответ дайте в гра­ду­сах.

Ответ: 125
Скрыть

По свойству вертиикальных углов $$\angle 2=\angle LMK$$, но $$\angle 1+\angle LMK=120+60=180$$, следовательно, так как они являются односторонними, то прямые параллельны. Следовательно, $$\angle 3+\angle 4=180\Leftrightarrow$$$$\angle 4=180-125=55^{\circ}$$, так как так же являются односторонними. 

Задание 1883

Диа­го­наль пря­мо­уголь­ни­ка об­ра­зу­ет угол 51° с одной из его сто­рон. Най­ди­те ост­рый угол между диа­го­на­ля­ми этого пря­мо­уголь­ни­ка. Ответ дайте в гра­ду­сах.

Ответ: 78
Скрыть

Пусть $$\angle EDH=51^{\circ}$$, по свойству диагоналей прямоугольника $$\angle DEH=\angle EDH$$, следовательно, из треугольника EHD по свойству суммы углов треугольника $$\angle EHD=180-2*51=78^{\circ}$$.

Причечание: при пересечении двух прямых получается две пары равных вертикальных углов, при нахождении угла между прямыми из них всегда выбирается острый, потому искать угол DHG нет смысла

Задание 1884

Пря­мые m и n па­рал­лель­ны. Най­ди­те ∠3, если ∠1 = 22°, ∠2 = 72°. Ответ дайте в гра­ду­сах.

Ответ: 86
Скрыть

Вертикальный угол для $$\angle 3$$ составляет с углами 1 и 2 по свойству смежных углов 180 градусов, тогда $$\angle 3=180-(\angle 1+\angle 2)=86^{\circ}$$

Задание 1886

Най­ди­те ве­ли­чи­ну угла AOK, если OK — бис­сек­три­са угла AOD, ∠AOB = 64°. Ответ дайте в гра­ду­сах.

Ответ: 58
Скрыть

По свойству смежных углов: $$\angle AOD=180-\angle AOB=116^{\circ}$$

По свойству биссеткрисы: $$\angle AOK=\frac{\angle AOD}{2}=58^{\circ}$$

Задание 1887

На пря­мой AB взята точка M. Луч MD — бис­сек­три­са угла CMB. Из­вест­но, что ∠DMC = 60°. Най­ди­те угол CMA. Ответ дайте в гра­ду­сах.

Ответ: 60
Скрыть

По свойству биссектрисы $$\angle CMD=\angle DMB=60^{\circ}$$
По свойству смежных углов: $$\angle AMC=180-\angle CMB=180-(60+60)=60^{\circ}$$

Задание 1888

В тре­уголь­ни­ке ABC из­вест­но, что $$\angle BAC=48^{\circ}$$, AD - бис­сек­три­са. Най­ди­те угол BAD. Ответ дайте в гра­ду­сах.

Ответ: 24
Скрыть

По свойству биссектрисы: $$\angle BAD=\frac{1}{2}\angle BAC=24^{\circ}$$

Задание 1889

В тре­уголь­ни­ке два угла равны 54° и 58°. Най­ди­те его тре­тий угол. Ответ дайте в гра­ду­сах.

Ответ: 68
Скрыть

По свойству суммы углов треугольника: $$\angle 3=180^{\circ}-\angle 2-\angle 1$$, тогда $$\angle 3=180-54-58=68^{\circ}$$

Задание 1892

Най­ди­те угол ABC. Ответ дайте в гра­ду­сах.

Ответ: 90
Скрыть

Так как одна из сторон проходит через диаметр окружности, тогда угол, противолежащий этой стороне равен $$90^{\circ}$$ по свойству вписанного угла

Задание 2807

Найдите величину угла DOK, если OK — биссектриса угла AOD, ∠DOB=64°. Ответ дайте в градусах.

 

Ответ: 58
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\angle AOD=180^{\circ}-\angle DOB=160^{\circ}-64^{\circ}=116^{\circ}$$ $$\angle KOD=\frac{\angle AOD}{2}=\frac{116^{\circ}}{2}=58^{\circ}$$

Задание 2920

Прямые m и n параллельны. Найдите ∠3, если ∠1=42, ∠2 =68. Ответ дайте в градусах.

Ответ: 70
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

∠1+∠2+∠3=180 ∠3=180-∠1-∠2=180-42-68=70

Задание 3057

Прямые m и n параллельны. Найдите ∠3, если ∠1=16, ∠2=71. Ответ дайте в градусах.

Ответ: 93
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Обозначим углы, как показано на рисунке:

∠4=∠1=16 (вертикальные)

∠5=∠2=71 (накрестлежащие) 

∠4+∠3+∠5=180

∠3=180-∠4-∠5=93

Задание 3400

На прямой АВ взята точка М. Луч MD — биссектриса угла CMВ. Известно, что $$\angle DMC=58^{\circ}$$. Найдите угол CMA. Ответ дайте в градусах.

Ответ: 64
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\angle DMB=\angle DMC=58^{\circ}$$ $$\angle CMB=\angle DMB+\angle DMC=116^{\circ}$$ $$\angle CAM=180^{\circ}-\angle CMB=180-116=64^{\circ}$$

Задание 4841

На прямой AB взята точка M. Луч MD — биссектриса  угла CMB. Известно, что $$\angle DMC=16^{\circ}$$. Найдите угол CMA.  Ответ дайте в градусах. 

Ответ: $$148^{\circ}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\angle CMO=\angle BMD=16^{\circ}$$ $$\Rightarrow$$ $$\angle CMB=16\cdot2=32$$; $$\angle AMC=180^{\circ}-\angle CMB=180^{\circ}-32^{\circ}=148^{\circ}$$

Задание 5079

На прямой АВ взята точка М. Луч MD — биссектриса угла CMВ. Известно, что $$\angle DMC=55^{\circ}$$. Найдите угол CMA. Ответ дайте в градусах. 

Ответ: 70
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\angle DMC=\angle DMB=55^{\circ}$$ $$\Rightarrow$$ $$\angle CMB=110^{\circ}$$ $$\Rightarrow$$ $$\angle AMC=180-110=70^{\circ}$$

Задание 5312

Прямые m и n параллельны. Найдите $$\angle 1$$, если $$\angle 2 = 52^{\circ}, \angle 3 = 48^{\circ}$$. Ответ дайте в градусах.

Ответ: 80
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Угол 2 равен углу 4 как накрестлежащие, но сумма углов 3,4,1 равна 180, тогда $$\angle 1=180 - 52 - 48 = 80$$

Задание 5696

Углы, от­ме­чен­ные на ри­сун­ке одной дугой, равны. Най­ди­те угол α. Ответ дайте в градусах

Ответ:

Задание 5697

Углы, от­ме­чен­ные на ри­сун­ке одной дугой, равны. Най­ди­те угол α. Ответ дайте в градусах

Ответ:

Задание 5698

Найдите угол ABC. Ответ дайте в градусах.

Ответ:

Задание 5699

Найдите угол ​ABC. Ответ дайте в градусах.

Ответ:

Задание 6252

Прямые m и n параллельны. Найдите $$\angle 3$$, если $$\angle 1=58, \angle 2=62$$. Ответ дайте в градусах.

Ответ: 60
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\angle 2=\angle 4$$(накрест лежащие)
$$\angle 1+\angle 4+\angle 3=180\Rightarrow$$ $$\angle 3=180-58-62=60$$

Задание 6395

Прямые m и n параллельны. Найдите ∠3, если ∠1=46, ∠2=51. Ответ дайте в градусах.

Ответ: 83
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\angle 4=\angle 2$$-накрест лежащие, тогда: $$\angle 3=180-\angle 1-\angle 2=180-46-51=83$$

Задание 6780

На прямой АВ взята точка М. Луч MD — биссектриса угла CMВ. Известно, что $$\angle DMC=48$$. Найдите угол CMA. Ответ дайте в градусах

Ответ: 84
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\angle BMC=2*48=96$$ (MD - биссектрисса)

$$\angle AMC=180-\angle BMC=84$$ (свойство смежных)

Задание 7271

Прямые m и n параллельны. Найдите $$\angle 2$$, если $$\angle 1=35^{\circ}$$, $$\angle 3=100^{\circ}$$

Ответ: 45
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$\angle 4=180-(\angle 1+\angle 3)=45$$ (по свойству развернутого угла )

2) $$\angle 4=\angle 2=45$$ (по свойству параллельных прямых )

Задание 7536

На прямой AB взята точка M. Луч MD — биссектриса угла CMB. Известно, что ∠DMC=26°. Найдите угол CMA. Ответ дайте в градусах.

Ответ: 128
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7706

Прямые m и n параллельны. Найдите $$\angle 1$$, если $$\angle 2=50^{\circ}$$, $$\angle 3=35^{\circ}$$. Ответ дайте в градусах

Ответ: 95
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 7849

Прямые m и n параллельны. Найдите $$\angle$$3, если $$\angle$$2=42, $$\angle$$1=58. Ответ дайте в градусах.

Ответ: 80
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Назовем угол между 1 и 3 как $$\angle 4$$. Так как прямые параллельны, то $$\angle 2$$ и $$\angle 4$$ равны как накрест лежащие. Тогда для угла 3, суммарный угол из 4 и 1 является смежным, следовательно, $$\angle 3=180-(\angle 4+\angle 1)=$$$$180-42-58=80$$

 

Задание 8939

В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине C равен 144°. Найдите величину угла ABC. Ответ дайте в градусах.

Ответ: 108
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 8992

В равнобедренном треугольнике ABC с основанием AC угол ABC равен 98. Найдите внешний угол при вершине C. Ответ дайте в градусах.

 

Ответ: 139
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9187

В треугольнике ABC $$\angle BAC=48^{\circ}$$, AD-биссектриса. Найдите $$\angle BAD$$. Ответ дайте в градусах.

Ответ: 24
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9213

В треугольнике ABC $$\angle BAC=86^{\circ}$$, AD — биссектриса. Найдите $$\angle BAD$$. Ответ дайте в градусах.

Ответ: 43
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9851

В треугольнике два угла равны 38° и 89°. Найдите его третий угол. Ответ дайте в градусах.

Ответ: 53
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 9970

В треугольнике два угла равны 28° и 55°. Найдите его третий угол. Ответ дайте в градусах.

Ответ: 97
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13195

Угол ABC равен 100о . Углы DBF и EBG равны (см.рис.). Найдите угол DBF. Ответ дайте в градусах.

Ответ: 40
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13264

В треугольнике АВС угол С равен 106°. Найдите внешний угол при вершине С. Ответ дайте в градусах.

Ответ: 74
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 13644

На плоскости даны четыре прямые. Известно, что $$\angle ACF=120^{\circ}$$,  $$\angle CAG=60^{\circ}$$, $$\angle ABE=55^{\circ}$$. Найдите $$\angle CDH$$. Ответ дайте в градусах.

Ответ: 125
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!