Перейти к основному содержанию

ЕГЭ 2022. Вариант 26 Ященко 36 вариантов ФИПИ школе.



ЕГЭ 2022, полный разбор 26 варианта Ященко ФИПИ школе 36 вариантов. Решаем типовые варианты от Ященко 2022 года ЕГЭ профиль!

Решаем 26 вариант Ященко 2022 года сборника ФИПИ школе 36 вариантов. Разбор 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 задания.

Больше разборов на моем ютуб-канале

Аналоги к этому заданию:

Задание 1

Найдите корень уравнения $$\log_5(x + 7)=\log_5(5-x)-1.$$
Ответ: -5
Скрыть

$$\log_5(x + 7) = \log_5(5-x)-1$$

$$\log_5(x + 7)+\log_5 5 = \log_5(5-x)$$

$$(x-7)\cdot5=5-x$$

$$5x-35=5-x$$

$$6x=-30$$

$$x=-5$$

Аналоги к этому заданию:

Задание 2

В сборнике билетов по философии всего 50 билетов, в 6 из них встречается вопрос по теме «Кант». Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по теме «Кант».
Ответ: 0,12
Скрыть

Всего благоприятных исходов (вопросы по теме «Кант») $$m = 6.$$ Общее число исходов (билетов) $$n = 50.$$ Получаем значение искомой вероятности:

$$P=\frac{m}{n}=\frac{6}{50}=\frac{3}{25}=0,12$$

 
Аналоги к этому заданию:

Задание 3

Острые углы прямоугольного треугольника равны 80° и 10°. Найдите угол между биссектрисой и медианой, проведёнными из вершины прямого угла. Ответ дайте в градусах.

Ответ: 35
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 4

Найдите значение выражения: $$\frac{20}{(2\sqrt{2})^{2}}$$
Ответ: 2,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 5

Объём треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины, равен 11. Найдите объём куба.

 

Ответ: 88
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 6

Прямая $$y=6x+7$$ параллельна касательной к графику функции $$y=x^2-5x+6.$$ Найдите абсциссу точки касания.

Ответ: 5,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 7

При адиабатическом процессе для идеального газа выполняется закон $$pV^{k}=7,776\cdot 10^{6}$$ Па*м4, где р — давление в газе в паскалях, V — объём газа 4 в кубических метрах, $$k=\frac{4}{3}$$. Найдите, какой объём V (в куб. м) будет занимать газ при давлении р, равном 3,75 • 106 Па.

Ответ: 1,728
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 8

Теплоход, скорость которого в неподвижной воде равна 16 км/ч, проходит 1 по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна 2 км/ч, стоянка длится 5 часов, а в исходный пункт теплоход возвращается через 53 часа после отплытия из него. Сколько километров прошёл теплоход за весь рейс?

Ответ: 756
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Аналоги к этому заданию:

Задание 9

На рисунке изображены графики функций $$f(x)=\frac{k}{x}$$ и $$g(x)=ax+b,$$ которые пересекаются х в точках $$A$$ и $$B$$. Найдите ординату точки $$B$$.

Ответ: -0,5
Скрыть

Точки $$(4;-2)$$ и $$(-4;-5)$$ принадлежат графику $$g(x).$$ Тогда:

$$\left\{\begin{matrix} -2=\alpha\cdot4+b\\ -5=\alpha\cdot(-4)+b \end{matrix}\right.\Leftrightarrow\left\{\begin{matrix} -7=2b\\ a=\frac{-2-b}{4} \end{matrix}\right.\Leftrightarrow\left\{\begin{matrix} b=-3,5\\ a=\frac{-2+3,5}{4}=\frac{3}{8} \end{matrix}\right.$$

Точка $$(4;-1)$$ принадлежит графику функции $$f(x).$$ Тогда:

$$-1=\frac{k}{4}\Leftrightarrow k=-4$$

Получили:

$$f(x)=-\frac{4}{x}$$

$$g(x)=\frac{3}{8}x-\frac{7}{2}$$

Тогда:

$$\frac{3}{8}x-\frac{7}{2}=-\frac{4}{x}\Leftrightarrow\left\{\begin{matrix} 3x^2-28x+32=0\\ x\neq0 \end{matrix}\right.$$

$$\frac{D}{4}=(14)^2-3\cdot32=100$$

$$x_1=\frac{14+10}{3}=8$$

$$x_2=\frac{14-10}{3}=\frac{4}{3}$$

Ордината $$B:$$

$$f(8)=-\frac{4}{8}=-0,5$$

Аналоги к этому заданию:

Задание 10

Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень даётся не более двух выстрелов. Известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,8. Во сколько раз вероятность события «стрелок поразит ровно четыре мишени» больше вероятности события «стрелок поразит ровно три мишени»?
Ответ: 12
Скрыть

Так как на каждую мишень тратится по 2 выстрела с вероятностью поразить ее $$p=\frac{4}{5},$$ то вероятность поражения цели при двух выстрелах можно вычислить как:

$$P=1-(1-\frac{4}{5})^2=\frac{24}{25}$$

Следовательно, вероятность поражения трех мишеней из пяти (в произвольном порядке), равна (по формуле Бернулли):

$$P_3=C^3_5P^3\cdot(1-P)^5-3,$$

где $$c^k_n=\frac{n!}{k!(n-k)!}$$ - число сочетаний из n по k. Имеем:

$$P_3=\frac{5!}{3!(5-3)!}\cdot(\frac{24}{25})^3\cdot(1-\frac{24}{25})^2=10\cdot(\frac{24}{25})^3\cdot(\frac{1}{25})^2$$

А вероятность поражения четырех мишеней из пяти, равна:

$$P_4=\frac{5!}{4!(5-4)!}\cdot(\frac{24}{25})^4\cdot(1-\frac{24}{25})^1=5\cdot(\frac{24}{25})^4\cdot(\frac{1}{25})^1$$

Отношение этих вероятностей, равно:

$$\frac{P_4}{P_3}=\frac{24}{25}\cdot25\cdot\frac{5}{10}=12$$

 
Аналоги к этому заданию:

Задание 11

Найдите точку минимума функции $$y=-\frac{x}{x^{2}+900}$$
Ответ: 30
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 12

а) Решите уравнение $$4\sin^{4}x+7\cos^{2}x-4=0$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $$[-5\pi;-4\pi]$$

Ответ: а)$$\pm \frac{\pi}{3}+\pi n; \frac{\pi}{2}+\pi n, n\in Z$$ б)$$-\frac{14\pi}{3};-\frac{9\pi}{2};-\frac{13\pi}{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 13

Основанием пирамиды FABC является правильный треугольник ABC со стороной 48. Все боковые рёбра пирамиды равны 40. На рёбрах FB и FC отмечены соответственно точки K и N так, что FK=FN=10. Через точки K и N проведена плоскость $$\alpha$$, перпендикулярная плоскости ABC.

а) Докажите, что плоскость $$\alpha$$ делит медиану AM в отношении 1:3.
б) Найдите расстояние от точки C до плоскости $$\alpha$$.
Ответ: $$6\sqrt{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 14

Решите неравенство: $$3\log^{2}_{4}(4-x)^{8}+4\log_{0,5}(4-x)^{6}\geq72$$
Ответ: $$(-\infty;4-2\sqrt{2}]\cup [3,5;4)\cup$$$$(4;4,5]\cup [4+2\sqrt{2};+\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 15

15 декабря планируется взять кредит в банке на сумму 1 000 000 рублей на (n+1) месяцев. Условия его возврата таковы:

- 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца с 1-го по n-й долг должен быть на 40 тысяч рублей меньше долга на 15-е число предыдущего месяца;
- 15-го числа n-го месяца долг составит 200 тысяч рублей;
- к 15-му числу (n+1)-го месяца кредит должен быть полностью погашен.

Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1 378 тысяч рублей.

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 16

В треугольнике АВС известно, что AC=26 и AB=BC=38.

а) Докажите, что средняя линия треугольника, параллельная стороне AC, пересекает окружность, вписанную в треугольник ABC.
б) Найдите отношение длин отрезков, на которые окружность делит среднюю линию, параллельную стороне AC.
Ответ: 4:5:4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 17

Найдите все значения а, при каждом из которых любое значение из промежутка [-1,5; -0,5] является решением неравенства $$(4|x|-a-3)(x^{2}-2x-2-a)\geq 0$$

Ответ: $$(-\infty;-3)\cup(-3;-1]\cup$$$$1\cup [3,25;+\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 18

Группу детей можно перевезти автобусами модели А или автобусами модели Б. Известно, что в автобусе модели А количество мест больше 40, но меньше 50, а в автобусах модели Б — больше 50, но меньше 60. Если всех детей рассадить в автобусы модели А, то все места будут заняты. Если всех детей рассадить в автобусы модели Б, то все места также будут заняты, но потребуется на один автобус меньше.

а) Может ли потребоваться 4 автобуса модели Б?
б) Найдите наибольшее возможное количество детей в группе, если известно, что их меньше 300.
в) Найдите наибольшее возможное количество автобусов модели А.
Ответ: а) да; б) 270; в) 17
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!