ЕГЭ 2021. Вариант 23 Ященко 36 вариантов ФИПИ школе.
ЕГЭ 2021, полный разбор 23 варианта Ященко ФИПИ школе 36 вариантов. Решаем типовые варианты от Ященко 2021 года ЕГЭ профиль!
Решаем 23 вариант Ященко 2021 года сборника ФИПИ школе 36 вариантов. Разбор 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 задания.
Больше разборов на моем ютуб-канале
Задание 2
На рисунке жирными точками показана цена золота, установленная Центробанком РФ во все рабочие дни в октябре 2011 года. По горизонтали указываются числа месяца, по вертикали - цена золота в рублях за грамм. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку наименьшую цену золота в период с 1 по 11 октября (в рублях за грамм).
Задание 7
На рисунке изображён график функции $$y\ =\ f(x),$$ определённой на интервале (-7; 8). $$F(x)$$ - одна из первообразных функции $$y\ =\ f(x).$$ Найдите количество точек, в которых касательная к графику функции $$F(x)$$ параллельна прямой $$y=-x+2$$ или совпадает с ней.
Задание 10
В боковой стенке высокого цилиндрического бака у самого дна закреплён кран. После его открытия вода начинает вытекать из бака, при этом высота столба воды в нём меняется по закону $$H\left(t\right)=\ at^2\ +\ bt\ +\ H_0$$, где Н - высота столба воды в метрах, $$H_0=8$$ м - начальный уровень воды, $$a\ =\frac{1}{72}$$ м/мин$${}^{2}$$ и $$b\ =\ -\frac{2}{3}$$ м/мин - постоянные, t - время в минутах, прошедшее с момента открытия крана. Сколько минут вода будет вытекать из бака?
Задание 11
Два велосипедиста одновременно отправились в 140-километровый пробег. Первый ехал со скоростью на 4 км/ч большей, чем скорость второго, и прибыл к финишу на 4 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу первым. Ответ дайте в км/ч.
Задание 13
а) Решите уравнение $${\left({\left(0,04\right)}^{sinx}\right)}^{cosx}=5^{-\sqrt{3}sinx}$$
б) Найдите все корни этого уравнения, принадлежащие промежутку $$[\frac{5\pi }{2};4\pi ]$$
Задание 16
Окружность с центром в точке О пересекает каждую из сторон трапеции ABCD в двух точках. Четыре получившиеся хорды окружности равны.
а) Докажите, что биссектрисы всех углов трапеции пересекаются в одной точке.
б) Найдите высоту трапеции, если окружность пересекает боковую сторону АВ в точках К и L так, что $$AK\ =\ 19,\ KL\ =\ 12,\ LB\ =\ 3.$$
Задание 17
15 июня планируется взять кредит в банке на сумму 1300 тысяч рублей на 16 месяцев. Условия его возврата таковы:
- 11-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца с 1-го по 15-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца;
- 15-го числа 15-го месяца долг составит 100 тысяч рублей;
- к 15-му числу 16-го месяца кредит должен быть полностью погашен.
Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1636 тысяч рублей.
Задание 19
Все члены конечной последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, либо в 12 раз больше, либо в 12 раз меньше предыдущего. Сумма всех членов последовательности равна 8750.
а) Может ли последовательность состоять из двух членов?
б) Может ли последовательность состоять из трёх членов?
в) Какое наибольшее количество членов может быть в последовательности?