ЕГЭ 2021. Вариант 14 Ященко 36 вариантов ФИПИ школе.
ЕГЭ 2021, полный разбор 14 варианта Ященко ФИПИ школе 36 вариантов. Решаем типовые варианты от Ященко 2021 года ЕГЭ профиль!
Решаем 14 вариант Ященко 2021 года сборника ФИПИ школе 36 вариантов. Разбор 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 задания.
Больше разборов на моем ютуб-канале
Задание 2
На рисунке показана средняя цена свинца во все месяцы 2017 и 2018 годов. По горизонтали указаны месяцы, по вертикали - цена тонны свинца в долларах США. Для наглядности точки соединены отрезками.
Определите по рисунку цену тонны свинца в июне 2018 года.
Задание 10
При сближении источника и приёмника звуковых сигналов, движущихся в некоторой среде по прямой навстречу друг другу, частота звукового сигнала, регистрируемого приёмником, не совпадает с частотой исходного сигнала $$f_0\ =\ 130\ $$Гц и определяется следующим выражением: $$f=f_0\frac{c+u}{c-v}$$, где $$c$$ - скорость распространения сигнала в среде (в м/с), а $$u\ =\ 15$$ м/с и $$v\ =\ 9$$ м/с - скорости приёмника и источника относительно среды соответственно. При какой максимальной скорости $$c$$ (в м/с) распространения сигнала в среде частота сигнала в приёмнике $$f$$ будет не менее 135 Гц?
Задание 11
Из одной точки круговой трассы, длина которой равна 25 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 114 км/ч, и через 30 минут после старта он опережал второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ дайте в км/ч.
Задание 13
а) Решите уравнение $${\log}_{\frac{1}{3}}(2{{\sin }^2 x\ }-3\cos2x\ +\ 6)\ =\ -2.$$
б) Найдите все корни этого уравнения, принадлежащие отрезку $$[-\frac{7\pi }{2};-2\pi ]$$
Задание 14
В правильной треугольной усечённой пирамиде $$ABCA_1B_1C_1$$ площадь нижнего основания АВС в девять раз больше площади меньшего основания $$A_1B_1C_1$$. Через ребро АВ проведена плоскость $$\alpha $$, которая пересекает ребро $$CC_1$$ в точке N и делит пирамиду на два многогранника равного объёма.
Задание 16
Окружность проходит через вершины А, В и D параллелограмма ABCD, пересекает сторону ВС в точках В и М, а также пересекает продолжение стороны CD за точку D в точке N.
Задание 17
В июле планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:
- каждый январь долг возрастает на 16 % по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо выплатить часть долга, равную 2,523 млн рублей.
Сколько миллионов рублей было взято в банке, если известно, что кредит был полностью погашен двумя равными платежами (то есть за два года)?
Задание 18
Найдите все значения параметра а, при которых система уравнений $$\left\{ \begin{array}{c} \frac{(y-\sqrt{10-x^2})({\left(x+5\right)}^2+{\left(y+5\right)}^2-10\left(x+7,5\right)+x^2-y^2+5)}{\sqrt{x^2-1}}=0 \\ y=ax+a-1 \end{array} \right.$$ имеет одно решение.
Задание 19
В школах № 1 и №2 учащиеся писали тест. Из каждой школы тест писали по крайней мере 2 учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл за тест был целым числом. После этого один из учащихся, писавших тест, перешёл из школы № 1 в школу №2, а средние баллы за тест были пересчитаны в обеих школах.