ЕГЭ 2021. Вариант 7 Ященко 36 вариантов ФИПИ школе.
ЕГЭ 2021, полный разбор 7 варианта Ященко ФИПИ школе 36 вариантов. Решаем типовые варианты от Ященко 2021 года ЕГЭ профиль!
Решаем 7 вариант Ященко 2021 года сборника ФИПИ школе 36 вариантов. Разбор 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 задания.
Больше разборов на моем ютуб-канале
Задание 2
В ходе химической реакции масса исходного вещества (реагента), которое ещё не вступило в реакцию, постепенно уменьшается. На графике показана зависимость массы реагента от времени. На горизонтальной оси отмечено время, прошедшее с начала реакции, в минутах, на вертикальной оси - масса реагента, который ещё не вступил в реакцию, в граммах. Определите по графику, сколько граммов реагента останется через 1 минуту после начала реакции.
Задание 4
Научная конференция проводится в 4 дня. Всего запланировано 50 докладов: первые два дня по 13 докладов, остальные распределены поровну между третьим и четвёртым днями. На конференции планируется доклад профессора М. Порядок докладов определяется жеребьёвкой. Какова вероятность того, что доклад профессора М. окажется запланированным на последний день конференции?
Задание 10
Независимое агентство намерено ввести рейтинг R новостных изданий на основе показателей информативности In, оперативности Ор и объективности Тr публикаций. Каждый отдельный показатель - целое число от -1 до 1.
Составители рейтинга считают, что информативность публикаций ценится вчетверо, а объективность - вдвое дороже, чем оперативность, то есть $$R=\frac{4In+Op+2Tr}{A}.$$
Найдите, каким должно быть число А, чтобы издание, у которого все показатели максимальны, получило рейтинг 1.
Задание 11
Из пункта А в пункт В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 63 км/ч, а вторую половину пути - со скоростью, большей скорости первого на 22 км/ч, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля. Ответ дайте в км/ч.
Задание 13
а) Решите уравнение $${\sin \left(2x+\frac{2\pi }{3}\right)\ }{\cos \left(4x+\frac{\pi }{3}\right)\ }-\cos 2x=\frac{{{\sin }^2 x\ }}{{\rm cos}(-\frac{\pi }{3})}$$
б) Найдите все корни этого уравнения, принадлежащие отрезку $$[-2\pi ;\ \frac{3\pi }{2}]$$
Задание 14
В правильной четырёхугольной призме $$ABCDA_1B_1C_1D_1$$ сторона основания АВ равна 2V3, а боковое ребро $$AA_1$$ равно 3. На рёбрах $$A_1D_1$$ и $$DD_1$$ отмечены соответственно точки К и М так, что $$A_1K\ =\ KD_1$$, a$$\ DM\ :\ MD_1\ =\ 2:1.$$
Задание 16
На сторонах АС, АВ и ВС прямоугольного треугольника АВС с прямым углом С вне треугольника АВС построены равнобедренные прямоугольные треугольники АКС, ALB и ВМС с прямыми углами К, L и М соответственно.
Задание 17
Александр хочет купить пакет акций быстрорастущей компании. В начале года у Александра не было денег на покупку акций, а пакет стоил 100 000 рублей. В середине каждого месяца Александр откладывает на покупку пакета акций одну и ту же сумму, а в конце месяца пакет дорожает, но не более чем на 30 %. Какую наименьшую сумму нужно откладывать Александру каждый месяц, чтобы через некоторое время купить желаемый пакет акций?
Задание 19
Для каждого натурального числа n обозначим через n! произведение первых n натуральных чисел $$(1!\ =\ 1).$$