ОГЭ 2023. Вариант 4 Ященко 36 вариантов ФИПИ школе.
Решаем 4 вариант ОГЭ Ященко 2023 года сборника ФИПИ школе 36 вариантов. Полный разбор всего 4 варианта (всех заданий).
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задания 1-5
Две подруги Оля и Аня задумались о том, как рассчитать площадь поверхности зонта.
На первый взгляд зонт кажется круглым, а его купол напоминает часть сферы (сферический сегмент). Но если присмотреться, то видно, что купол зонта состоит из двенадцати отдельных клиньев, натянутых на каркас из двенадцати спиц (рис. 1). Сферическая форма в раскрытом состоянии достигается за счёт гибкости спиц и эластичности ткани, из которой изготовлен зонт.
Оля и Аня сумели измерить расстояние между концами соседних спиц а. Оно оказалось равно 28 см. Высота купола зонта h (рис. 2) оказалась равна 27 см, а расстояние d между концами спин,, образующих дугу окружности, проходящей через вершину зонта, — ровно 108 см.
1) Длина зонта в сложенном виде равна 27 см и складывается из длины ручки (рис. 3) и трети длины спицы (зонт в три сложения). Найдите длину спицы, если длина ручки зонта равна 6,8 см.
2) Поскольку зонт сшит из треугольников, рассуждала Оля, площадь его поверхности можно найти как сумму площадей треугольников. Вычислите площадь поверхности зонта методом Оли, если высота каждого равнобедренного треугольника, проведённая к основанию, равна 59 см. Ответ дайте в квадратных сантиметрах с округлением до десятков.
3) Аня предположила, что купол зонта имеет форму сферического сегмента. Вычислите радиус R сферы купола, зная, что $$ОС = R$$ (рис. 2). Ответ дайте в сантиметрах.
4) Аня нашла площадь купола зонта как площадь поверхности сферического сегмента по формуле $$S = 2\pi Rh$$, где R — радиус сферы, a h — высота сегмента. Рассчитайте площадь поверхности купола способом Ани. Число $$\pi$$ округлите до 3,14. Ответ дайте в квадратных сантиметрах с округлением до целого.
5) Рулон ткани имеет длину 20 м и ширину 90 см. На фабрике из этого рулона были вырезаны треугольные клинья для 15 зонтов, таких же, как зонт, который был у Оли и Ани. Каждый треугольник с учётом припуска на швы имеет площадь 850 кв. см. Оставшаяся ткань пошла в обрезки. Сколько процентов ткани рулона пошло в обрезки?
1) Длина $$\frac{1}{3}$$ спицы: $$27-6,8=20,2$$ см. Тогда длина всей спицы: $$3\cdot 20,2=60,6$$ см.
2) Площадь одного треугольника: $$S_1=\frac{1}{2}\cdot 28\cdot 59=826$$. Тогда площадь поверхности зонта: $$S_2=12\cdot 826=9912\approx 9910$$ см$$^2$$.
3) Пусть $$OM=x$$; из $$\triangle OLN: OM$$ - высота и медиана $$\to MN=\frac{d}{2}=54$$ см. Из $$\triangle OMN: OM^2+MN^2=ON^2\to x^2+54^2=(x+27)^2\leftrightarrow 54^2=54x+27^2\leftrightarrow$$ $$\leftrightarrow 54x=2916-729\to x=40,5\to R=40,5+27=67,5$$ см.
4) $$S=2\cdot 3,14\cdot 67,5\cdot 27=11445,3\approx 11445$$ см$$^2$$.
5) Количество клиньев: $$15\cdot 12=180$$ шт. Площадь клиньев: $$\frac{180\cdot 850}{100\cdot 100}=15,3$$ м$$^2$$. Площадь рулона: $$20\cdot 0,9=18$$ м$$^2$$. Обрезков: $$18-15,3=2,7$$ м$$^2$$. В процентах $$\frac{2,7}{18}\cdot 100=15%$$
Задание 11
На рисунках изображены графики функций вида $$y=ax^2+bx+c$$. Установите соответствие между знаками коэффициентов $$a$$ и $$c$$ и графиками функций.
КОЭФФИЦИЕНТЫ
В таблице под каждой буквой укажите соответствующий номер.
А | Б | В |
Задание 12
Перевести значение температуры по шкале Фаренгейта в шкалу Цельсия позволяет формула $$t_c=\frac{5}{9}(t_F-32)$$, где $$t_c$$ — температура в градусах Цельсия,$$t_F$$ —температура в градусах Фаренгейта. Скольким градусам по шкале Цельсия соответствует 5 градусов по шкале Фаренгейта?
$$t_c=\frac{5}{9}(5-32)=-15$$
Задание 14
В кафе есть только квадратные столики, за каждый из которых могут сесть 4 человека. Если сдвинуть два квадратных столика, то получится стол, за который могут сесть 6 человек. На рисунке изображён случай, когда сдвинули 3 квадратных столика вдоль одной линии. В этом случае получился стол, за который могут сесть 8 человек. Сколько человек может сесть за стол, который получится, если сдвинуть 22 квадратных столика вдоль одной линии?
Задание 15
Один из острых углов прямоугольного треугольника равен 23°. Найдите его другой острый угол. Ответ дайте в градусах.
По свойству суммы острых углов прямоугольного треугольника второй острый угол будет равен: $$90-23=67^{\circ}$$
Задание 19
Какое из следующих утверждений верно?
В ответ запишите номер выбранного утверждения.