ЕГЭ База
Задание 1982
Сторона треугольника равна 12, а высота, проведённая к этой стороне, равна 33. Найдите площадь этого треугольника.
Из формулы площади треугольника $$S=\frac{1}{2}*12*33=198$$
Задание 1981
В треугольнике ABC отрезок DE — средняя линия. Площадь треугольника CDE равна 45. Найдите площадь треугольника ABC.
- Так как DE - средняя линия, то $$DE=\frac{1}{2}AC$$, но тогда $$S_{CDE}=\frac{1}{2}S_{ADC}$$ (у них одинаковая высота, но различные в два раза основания). То есть $$S_{ADC}=2*45=90$$, тогда $$S_{ADEC}=135$$
- Треугольники ABC и DBE подобны (по свойству средней линии), при это $$k=\frac{1}{2}$$ - коэффициент подобия, тогда $$\frac{S_{BDE}}{S_{ABC}}=k^{2}=\frac{1}{4}$$, тогда $$S_{BDE}=\frac{1}{4}S_{ABC}$$, следовательно, $$S_{ADEC}=\frac{3}{4}S_{ABC}$$. Получаем, что $$S_{ABC}=\frac{4}{3}S_{ADEC}=180$$
Задание 1976
В треугольнике одна из сторон равна 10, другая равна $$10\sqrt{3}$$, а угол между ними равен 60°. Найдите площадь треугольника.
По формуле площади треугольника $$S=\frac{1}{2}10*10\sqrt{3}*\sin 60^{\circ}=75$$
Задание 1975
В треугольнике одна из сторон равна 10, а опущенная на нее высота — 5. Найдите площадь треугольника.
По формуле площади треугольника $$S=\frac{1}{2}*10*5=25$$
Задание 1960
Периметр равнобедренного треугольника равен 216, а боковая сторона — 78. Найдите площадь треугольника.
- Найдем основание равнобедренного треугольника : $$216-2*78=60$$
- Полупериметр данного треугольника: $$p=\frac{216}{2}=108$$. По формуле Герона: $$S=\sqrt{108(108-78)^{2}(108-60)}=2160$$
Задание 1959
Боковая сторона равнобедренного треугольника равна 34, а основание равно 60. Найдите площадь этого треугольника.
- Найдем полупериметр данного треугольника: $$p=\frac{34*2+60}{2}=64$$
- По формуле Герона: $$S=\sqrt{64(64-34)^{2}(64-60)}=480$$
Задание 1958
В равнобедренном треугольнике ABC AC=BC. Найдите AC, если высота CH=12, AB=10.
- По свойству высоты равнобедренного треугольника, проведенной к основанию: $$AH=HB=\frac{1}{2}AB=5$$
- По теореме Пифагора из треугольника ACH: $$AC=\sqrt{12^{2}+5^{2}}=13$$
Задание 1957
В равнобедренном треугольнике боковая сторона равна 10, основание — $$5(\sqrt{6}-\sqrt{2})$$, а угол, лежащий напротив основания, равен 30°. Найдите площадь треугольника.
По формуле площади треугольника $$S=\frac{AB*AC*\sin B}{2}=\frac{1}{2}*10*10*\frac{1}{2}=25$$
Задание 1956
В равнобедренном треугольнике боковая сторона равна 10, а угол, лежащий напротив основания, равен 120°. Найдите площадь треугольника, делённую на $$\sqrt{3}$$
По формуле площади треугольника $$S=\frac{10*10*\sin 120^{\circ}}{2}=\frac{1}{2}*10*10*\frac{\sqrt{3}}{2}=25\sqrt{3}$$. В ответе необходимо указать ответ, деленный на $$\sqrt{3}$$, то есть 25
Задание 1955
Высота равностороннего треугольника равна 10. Найдите его площадь, делённую на $$\frac{\sqrt{3}}{3}$$.
- Из треугольника ACH: $$AC=\frac{CH}{\sin A}=\frac{10}{\frac{\sqrt{3}}{2}}=\frac{20}{\sqrt{3}}$$
- Так как треугольник равносторонний, то AC=AB, тогда из формулы площади треугольника: $$S=\frac{1}{2}CH*AB=\frac{100}{\sqrt{3}}$$. В ответе необходимо указать результат, деленный на $$\frac{\sqrt{3}}{3}$$: $$\frac{100}{\sqrt{3}}:\frac{\sqrt{3}}{3}=100$$
Задание 1954
Периметр равностороннего треугольника равен 30. Найдите его площадь, делённую на $$\sqrt{3}$$.
- Пусть a - сторона равностороннего треугольника, тогда $$a=\frac{P}{3}=10$$
- Из формулы площади треугольника: $$S=\frac{1}{2}*10*10*\sin 60^{\circ}=25\sqrt{3}$$, в ответе необходимо указать значение без $$\sqrt{3}$$, то есть 25
Задание 1953
Сторона равностороннего треугольника равна 10. Найдите его площадь, делённую на $$\sqrt{3}$$.
Из формулы площади треугольника: $$S=\frac{1}{2}*10*10*\sin 60^{\circ}=25\sqrt{3}$$, в ответе необходимо указать значение без $$\sqrt{3}$$, то есть 25
Задание 1952
Два катета прямоугольного треугольника равны 4 и 9. Найдите площадь этого треугольника.
По определению площади прямоугольного треугольника: $$S=\frac{1}{2}4*9=18$$
Задание 1951
Катеты прямоугольного треугольника равны 8 и 15. Найдите гипотенузу этого треугольника.
По теореме Пифагора $$c=\sqrt{8^{2}+15^{2}}=17$$, где с - гипотенуза данного треугольника.
Задание 1950
В прямоугольном треугольнике гипотенуза равна 70, а один из острых углов равен 45°. Найдите площадь треугольника.
- $$AB=AC*\sin 45^{\circ}=$$$$70*\frac{\sqrt{2}}{2}=35\sqrt{2}$$
- $$BC=AC*\cos 45^{\circ}=$$$$70*\frac{\sqrt{2}}{2}=35\sqrt{2}$$
- Площадь треугольника в таком случае: $$S=\frac{1}{2}*35\sqrt{2}*35\sqrt{2}=1225$$
Задание 1949
В прямоугольном треугольнике один из катетов равен 4, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.
- Пусть BC=4, тогда $$\angle C=45^{\circ}$$, тогда $$\angle A=90-45=45^{\circ}$$, следовательно, треугольника ABC - равнобедренный и AB=BC
- По определению площади прямоугольного треугольника $$S=\frac{1}{2}*4*4=8$$
Задание 1948
Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 28 и 100.
- Пусть b - второй катет, тогда по теореме Пифагора: $$b=\sqrt{100^{2}-28^{2}}=96$$
- По определению площади прямоугольного треугольника : $$S=\frac{1}{2}*96*28=1344$$
Задание 1947
В прямоугольном треугольнике один из катетов равен 10, острый угол, прилежащий к нему, равен 60°, а гипотенуза равна 20. Найдите площадь треугольника, делённую на $$\sqrt{3}$$.
- Пусть AB=10, $$\angle A=60^{\circ}$$, тогда из определения тангенса $$BC=AB*tg A=10\sqrt{3}$$
- Из определения площади прямоугольного треуольника $$S=\frac{1}{2}*10*10\sqrt{3}=50\sqrt{3}$$, ответ необходимо указать деленный на $$\sqrt{3}$$, то есть 50
Задание 1946
В прямоугольном треугольнике один из катетов равен 10, а угол, лежащий напротив него, равен 45°. Найдите площадь треугольника.
- Если один острый угол прямоугольного треугольника составляет 45 градусов, то и другой угол также равен $$90-45=45^{\circ}$$, тогда треугольник равнобедренный, и катеты равны
- По определению площади прямоугольного треугольника: $$S=\frac{1}{2}*10*10=50$$
Задание 1908
В треугольнике ABC известно, что AC=14, $$BC=\sqrt{165}$$, угол C равен 90°. Найдите радиус описанной окружности этого треугольника.
Радиус описанной окружности около прямоугольного треугольника равен половине его гипотенузы, тогда по теореме Пифагора: $$AB=\sqrt{AC^{2}+CB^{2}}=\sqrt{361}=19$$, тогда радиус описанной окружности составляет 9,5
Задание 1907
Один из острых углов прямоугольного треугольника равен 23°. Найдите его другой острый угол. Ответ дайте в градусах.
По свойству суммы острых углов прямоугольного треугольника второй острый угол будет равен: $$90-23=67^{\circ}$$
Задание 1906
Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 12 и 13.
По теореме Пифагора найдем второй катет: $$\sqrt{13^{2}-12^{2}}=5$$
Найдем площадь прямоугольного треугольника как половину произведения длин его катетов :$$\frac{1}{2}*12*5=30$$
Задание 1904
В прямоугольном треугольнике ABC катет AC равен 35, а высота CH, опущенная на гипотенузу, равна $$14\sqrt{6}$$. Найдите $$\sin\angle ABC$$.
По свойству высоты прямоугольного треугольника, опущенной из прямого угла: $$\angle ACH=\angle ABC$$
Тогда из треугольника ACH: $$\cos ACH=\frac{CH}{AC}=\frac{14\sqrt{6}}{35}=\frac{2\sqrt{6}}{5}$$
По основному тригонометрическому тождеству: $$\sin ACH=\sqrt{1-\cos^{2} ACH}=\sqrt{\frac{24}{25}}=\frac{1}{5}$$.
Задание 1903
Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC. Найдите AB, если AH = 6, AC = 24.
Из подобия треугольников BHA и ABC (по свойтсву высоты прямоугольного треугольника, проведенной из вершины прямого угла): $$\frac{HA}{AB}=\frac{AB}{AC}\Leftrightarrow$$$$AB=\sqrt{HA*AC}=12$$
Задание 1902
В треугольнике ABC угол C равен 90°, AC=12, $$\tan A=\frac{2\sqrt{10}}{3}$$. Найдите AB.
Из определения тангенса угла: $$CB=AC*tg A=8\sqrt{10}$$
По теореме Пифагора: $$AB=\sqrt{AC^{2}+CB^{2}}=\sqrt{144+640}=28$$
Задание 1901
Площадь прямоугольного треугольника равна $$32\sqrt{3}$$. Один из острых углов равен 30°. Найдите длину гипотенузы.
Пусть катет, лежащий напротив угла в 30 градусов равен х, тогда по свойству катета, лежащего напротив угла в 30 градусов, гипотенуза равна 2х.
По теореме Пифагора третий катет будет равен: $$\sqrt{(2x)^{2}-x^{2}}=\sqrt{3}x$$
Распишем площадь треугольника как половину произведения его катетов:$$\frac{1}{2}x*\sqrt{3}x=32\sqrt{3}\Leftrightarrow$$$$x^{2}=64\Leftrightarrow$$$$x=8$$, тогда гипотенуза составит $$2*8=16$$
Задание 1900
Катеты прямоугольного треугольника равны $$\sqrt{15}$$ и 1. Найдите синус наименьшего угла этого треугольника.
Найдем гипотенузу по теореме Пифагора: $$\sqrt{(\sqrt{15})^{2}+1^{2}}=4$$
Напротив меньшей стороны лежит меньший угол, то есть меньший угол лежит напротив катета, равного 1, тогда $$\sin \alpha=\frac{1}{4}=0,25$$
Задание 1899
Катеты прямоугольного треугольника равны 35 и 120. Найдите высоту, проведенную к гипотенузе.
Найдем гипотенузу треугольника по теореме Пифагора: $$\sqrt{35^{2}+120^{2}}=125$$
Высоту прямоугольного треугольника, опущенного из прямого угла можно выразить как: $$h=\frac{ab}{c}$$, где a,b - катеты, с - гипотенуза, тогда $$h=\frac{35*120}{125}=33,6$$
Задание 1898
В треугольнике ABC угол C равен 90°, BC = 20, $$\tan A=0,5$$. Найдите AC.
Из определения тангенса угла: $$AC=\frac{BC}{tg A}=\frac{20}{0,5}=40$$
Задание 1897
В треугольнике ABC угол C равен 90°, AC = 20, tgA = 0,5. Найдите BC.
По определению тангенса: $$CB=AC*tg A=20*0,5=10$$
Задание 1896
В треугольнике ABC угол C равен 90°, BC=12, $$\sin A=\frac{4}{11}$$. Найдите AB.
По определению синуса: $$AB=\frac{BC}{\sin A}=\frac{12}{\frac{4}{11}}=33$$
Задание 1895
В треугольнике ABC угол C равен 90°, AC=15, $$\cos A=\frac{5}{7}$$. Найдите AB.
По определению косинуса: $$AB=\frac{AC}{\cos A}=\frac{15}{\frac{5}{7}}=21$$
Задание 1894
Два острых угла прямоугольного треугольника относятся как 4:5. Найдите больший острый угол. Ответ дайте в градусах.
Пусть меньший угол равен 4х, тогда больший - 5х. По свойству суммы острых углов прямоугольного треугольника: $$4x+5x=90\Leftrightarrow$$$$x=10$$, тогда больший угол $$5*10=50^{\circ}$$
Задание 1878
Точки M и N являются серединами сторон AB и BC треугольника ABC, сторона AB равна 66, сторона BC равна 37, сторонa AC равна 74. Найдите MN.
Так как M и N середины сторон, то отрезок MN является средней линией, которая, в свою очередь равна половине стороны, которой она параллельна, то есть AC, тогда MN=0,5AC=37
Задание 1877
В треугольнике два угла равны 43° и 88°. Найдите его третий угол. Ответ дайте в градусах.
По свойству углов треугольника: $$\angle 3=180-\angle 1 -\angle 2=180-43-88=49^{\circ}$$
Задание 1875
Углы B и C треугольника ABC равны соответственно 65° и 85°. Найдите BC, если радиус окружности, описанной около треугольника ABC, равен 14.
По свойству углов треугольника: $$\angle A=180-\angle B -\angle C=180-85-65=30^{\circ}$$
По теореме синусов: $$BC=2R*\sin A$$, где R - радиус описанной окружности около треугольника ABC, тогда $$BC=2*14*\sin 30^{\circ}=14$$
Задание 1874
В треугольнике ABC BM — медиана и BH – высота. Известно, что AC = 216, HC = 54 и ∠ACB = 40°. Найдите угол AMB. Ответ дайте в градусах.
Задание 1873
В треугольнике ABC AB = BC, а высота AH делит сторону BC на отрезки BH = 64 и CH = 16. Найдите cos B.
Задание 1872
В остроугольном треугольнике ABC высота AH равна $$20\sqrt{3}$$,а сторона AB равна 40. Найдите $$\cos B$$.
Из прямоугольного треугольника ABH: $$\cos B=\frac{BH}{AB}$$, по теореме Пифагора: $$BH=\sqrt{AB^{2}-AH^{2}}=\sqrt{1600-400*3}=20$$, тогда $$\cos B=\frac{20}{40}=0,5$$
Задание 1871
В треугольнике ABC проведены медиана BM и высота BH . Известно, что AC = 84 и BC = BM. Найдите AH.
Треугольник BMC - равнобедренный, следовательно, по свойству высоты равнобедренного треугольника BH - медиана, и $$MH=HC=\frac{1}{2}MC$$
BM - медиана в треугольнике ABC, следовательно, $$AM=MC=\frac{1}{2}AC$$, тогда $$MH=\frac{1}{2}AM=\frac{1}{4}AC$$, то есть $$AH=\frac{3}{4}AC=63$$
Задание 1870
В треугольнике ABC проведена биссектриса AL, угол ALC равен 112°, угол ABC равен 106°. Найдите угол ACB. Ответ дайте в градусах.
Задание 1869
У треугольника со сторонами 16 и 2 проведены высоты к этим сторонам. Высота, проведённая к первой стороне, равна 1. Чему равна высота, проведённая ко второй стороне?
Из формулы площади треугольника: $$S=\frac{1}{2}AL*BC=\frac{1}{2}AC*BD$$ , тогда пусть AC=16, BC=2, BD=1, получаем, что $$AL=\frac{AC*BD}{BC}=8$$
Задание 1853
В треугольнике ABC AC = BC. Внешний угол при вершине B равен 140°. Найдите угол C. Ответ дайте в градусах.
$$\angle ABC=180-\angle CBD=180-140=40^{\circ}$$ (по свойству смежных углов), но так как AC=BC, то $$\angle CAB=\angle CBA=40^{\circ}$$, тогда $$\angle C=180-40*2=100$$(по свойству углов треугольника)
Задание 1852
Сторона равностороннего треугольника равна $$12\sqrt{3}$$. Найдите биссектрису этого треугольника.
По свойству биссектрисы равностороннего трекугольника $$\angle AHC=90^{\circ}$$, тогда из треугольника AHC: $$AH=AC*\sin ACH$$, $$\angle ACH=60^{\circ}$$( по свойству углов равностороннего треугольника), следовательно, $$AH=12\sqrt{3}*\frac{\sqrt{3}}{2}=18$$
Задание 1851
Боковая сторона равнобедренного треугольника равна 10, а основание равно 12. Найдите площадь этого треугольника.
Воспользуемся формулой Герона для нахождения площади треугольника. Найдем полупериметр: $$p=\frac{10+10+12}{2}=16$$, тогда $$S=\sqrt{16*(16-10)(16-10)(16-12)}=48$$
Задание 1850
В треугольнике ABC AB = BC = 53, AC = 56. Найдите длину медианы BM.
По свойству медианы в равнобедренном треугольнике: $$MC=\frac{1}{2}AC=28$$, из прямоугольного треугольника BMC по теореме Пифагора: $$BM=\sqrt{BC^{2}-MC^{2}}=\sqrt{53^{2}-28^{2}}=45$$
Задание 1849
Высота равностороннего треугольника равна $$15\sqrt{3}$$. Найдите его периметр.
По свойству высоты равностороннего треугольника $$\angle AHC=90^{\circ}$$ , тогда из треугольника AHC: $$AC=\frac{AH}{\sin ACH}$$, $$\angle ACH=60^{\circ}$$ ( по свойству углов равностороннего треугольника), следовательно, $$AC=\frac{15\sqrt{3}}{\frac{\sqrt{3}}{2}}=30$$, тогда периметр треугольника составит: $$30*3=90$$
Задание 1848
Точка D на стороне AB треугольника ABC выбрана так, что AD = AC. Известно, что ∠CAB = 80° и ∠ACB=59°. Найдите угол DCB. Ответ дайте в градусах.
Так как AD=AC, то треугольник ADC - равнобедренный и $$\angle ADC=\angle ACD=\frac{180-\angle CAB}{2}=50^{\circ}$$, тогда $$\angle DCB=\angle ACB-\angle ACD=59-50=9^{\circ}$$
Задание 1847
Периметр равнобедренного треугольника равен 196, а основание — 96. Найдите площадь треугольника.
Найдем боковую сторону данного треугольника: $$\frac{196-96}{2}=50$$, полупериметр данного треугольника $$p=\frac{196}{3}=98$$, тогда по формуле Герона площадь данного треугольника: $$S=\sqrt{98(98-50)(98-50)(98-96)}=48*14=672$$
Задание 1846
Площадь равнобедренного треугольника равна $$196\sqrt{3}$$. Угол, лежащий напротив основания равен 120°. Найдите длину боковой стороны.
Площадь треугольника можно выразить как половину произведения сторон треугольник на синус угла между ними, пусть х - боковая сторона треугольника, тогда $$196\sqrt{3}=\frac{1}{2}x^{2}*\sin 120^{\circ}\Leftrightarrow$$$$x=\sqrt{\frac{196\sqrt{3}*2}{\frac{\sqrt{3}}{2}}}=28$$
Задание 1845
Боковая сторона равнобедренного треугольника равна 5. Угол при вершине, противолежащий основанию, равен 120°. Найдите диаметр окружности, описанной около этого треугольника.
Пусть угол B равен 120 градусам, тогда $$\smile AC = 240^{\circ}$$ (по свойству вписанного угла), тогда меньшая дуга CA равна $$360-240=120^{\circ}$$, и центральный угол, опирающийся на эту дугу так же составляет 120 градусов ($$\angle AOC$$). Так как треугольники ABC и ACO равнобедренные, имею общую сторону и равные углы против этой стороны, то они между собой равны, следовательно, AO=5=r, где r - радиус окружности, следовательно, диаметр окружности равен 10
Задание 1844
В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине C равен 123°. Найдите величину угла ABC. Ответ дайте в градусах.
По свойству смежных углов: $$\angle BCA=180-\angle BCD=180-123=57^{\circ}$$, так как треугольник равнобедренный, то $$\angle A=\angle BCA=57^{\circ}$$, следовательно по свойству улов треугольника $$\angle ABC=180-57*2=66^{\circ}$$
Задание 1843
В равностороннем треугольнике ABC медианы BK и AM пересекаются в точке O. Найдите $$\angle AOK$$.
По свойству медианы раностороннего треугольника $$\angle AKO =90^{\circ}$$ и $$\angle OAK=\frac{1}{2}\angle A$$, по свойству углов равностороннего треугольника: $$\angle A=60^{\circ}\Rightarrow$$$$\angle OAK=30^{\circ}\Rightarrow$$$$\angle AOK=90-\angle OAK=60^{\circ}$$
Задание 1842
В равностороннем треугольнике ABC биссектрисы CN и AM пересекаются в точке P. Найдите $$\angle MPN$$.
По свойству биссектрис равностороннего треугольника $$\angle BNP=\angle BMP=90^{\circ}$$, по свойству углов равностороннего треугольника $$\angle B=60^{\circ}$$, тогда по свойству углов выпуклого четырехугольника $$\angle MPN=360-90*2-60=120^{\circ}$$
Задание 876
В треугольнике ABC угол A равен 30°, угол B равен 86°, CD — биссектриса внешнего угла при вершине C, причем точка D лежит на прямой AB. На продолжении стороны AC за точку C выбрана такая точка E, что CE = CB. Найдите угол BDE. Ответ дайте в градусах |