Перейти к основному содержанию

ЕГЭ База

Числа и их свойства

Цифровая запись числа

Задание 1597

При­ве­ди­те при­мер трёхзнач­но­го числа, сумма цифр ко­то­ро­го равна 20, а сумма квад­ра­тов цифр де­лит­ся на 3, но не де­лит­ся на 9.

Ответ: 578|587|758|785|857|875

Задание 1598

Най­ди­те трёхзнач­ное на­ту­раль­ное число, боль­шее 400, ко­то­рое при де­ле­нии на 6 и на 5 даёт рав­ные не­ну­ле­вые остат­ки и пер­вая слева цифра ко­то­ро­го яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским двух дру­гих цифр. В от­ве­те ука­жи­те какое-ни­будь одно такое число.

Ответ: 453|573|693

Задание 1599

Цифры четырёхзнач­но­го числа, крат­но­го 5, за­пи­са­ли в об­рат­ном по­ряд­ке и по­лу­чи­ли вто­рое четырёхзнач­ное число. Затем из пер­во­го числа вычли вто­рое и по­лу­чи­ли 4536. При­ве­ди­те ровно один при­мер та­ко­го числа.

Ответ: 9605|9715|9825|9935

Задание 1600

Най­ди­те четырёхзнач­ное число, крат­ное 22, про­из­ве­де­ние цифр ко­то­ро­го равно 24. В от­ве­те ука­жи­те какое-ни­будь одно такое число.

Ответ: 2134|4312|1342|3124

Задание 1601

Най­ди­те четырёхзнач­ное число, крат­ное 18, про­из­ве­де­ние цифр ко­то­ро­го равно 24. В от­ве­те ука­жи­те какое-ни­будь одно такое число.

Ответ: 2232|3222|2322

Задание 1602

Най­ди­те трёхзнач­ное число, сумма цифр ко­то­ро­го равна 25, если из­вест­но, что его квад­рат де­лит­ся на 16.

Ответ: 988

Задание 1603

При­ве­ди­те при­мер четырёхзнач­но­го на­ту­раль­но­го числа, крат­но­го 4, сумма цифр ко­то­ро­го равна их про­из­ве­де­нию. В от­ве­те ука­жи­те ровно одно такое число.

Ответ: 1412|4112|1124

Задание 1604

Най­ди­те наи­мень­шее четырёхзнач­ное число, крат­ное 11, у ко­то­ро­го про­из­ве­де­ние его цифр равно 12.

В от­ве­те ука­жи­те наи­мень­шее такое число.

Ответ: 1232|2321

Задание 1605

Най­ди­те четырёхзнач­ное на­ту­раль­ное число, крат­ное 19, сумма цифр ко­то­ро­го на 1 боль­ше их про­из­ве­де­ния.

Ответ: 3211

Задание 1606

Най­ди­те наи­мень­шее пя­ти­знач­ное число, крат­ное 55, про­из­ве­де­ние цифр ко­то­ро­го боль­ше 50, но мень­ше 75.

Ответ: 11275

Задание 5895

Найдите ше­сти­знач­ное на­ту­раль­ное число, ко­то­рое за­пи­сы­ва­ет­ся толь­ко циф­ра­ми 1 и 0 и де­лит­ся на 24.

Ответ:

Задание 5896

Найдите наи­мень­шее трёхзначное число, ко­то­рое при де­ле­нии на 2 даёт оста­ток 1, при де­ле­нии на 3 даёт оста­ток 2, при де­ле­нии на 5 даёт оста­ток 3 и ко­то­рое за­пи­са­но тремя раз­лич­ны­ми нечётными цифрами.

Ответ:

Задание 5897

Найдите наи­мень­шее трёхзначное на­ту­раль­ное число, ко­то­рое при де­ле­нии на 6 и на 11 даёт рав­ные не­ну­ле­вые остат­ки и у ко­то­ро­го сред­няя цифра яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским двух край­них цифр.

Ответ:

Задание 5898

Сумма цифр трёхзначного числа A де­лит­ся на 13. Сумма цифр числа A+5 также де­лит­ся на 13. Най­ди­те такое число A.

Ответ:

Задание 5899

Вычеркните в числе 123456 три цифры так, чтобы по­лу­чив­ше­е­ся трёхзначное число де­ли­лось на 27. В от­ве­те ука­жи­те по­лу­чив­ше­е­ся число.

Ответ: