ЕГЭ База
Задание 1833
Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 65° и 50°. Найдите меньший угол параллелограмма.
Пусть $$\angle ABC=65^{\circ};\angle CBD=50^{\circ}$$, тогда $$\angle B=65+50=115^{\circ}$$, и по свойству углов параллелограмма $$\angle A=180-\angle B=180-115=65^{\circ}$$, что и есть меньший угол парарллелограмма
Задание 1834
Разность углов, прилежащих к одной стороне параллелограмма, равна 40°. Найдите меньший угол параллелограмма. Ответ дайте в градусах.
Пусть $$\angle A=x$$, тогда $$\angle B=x+40$$, по свойству углов параллелограмма $$\angle A+\angle B=180\Leftrightarrow$$$$x+x+40=180\Leftrightarrow$$$$x=70$$,то есть $$\angle A=70^{\circ}$$, что и есть меньший угол
Задание 1835
Один угол параллелограмма в два раза больше другого. Найдите меньший угол. Ответ дайте в градусах.
Пусть $$\angle A=x$$, тогда $$\angle B=2x$$, по свойству углов параллелограмма $$\angle A+\angle B=180^{\circ}\Leftrightarrow$$$$x+2x=180\Leftrightarrow$$$$x=60$$, следовательно, $$\angle A=60^{\circ}$$, что и есть меньший угол
Задание 1836
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 30° и 45°. Найдите больший угол параллелограмма.
Пусть $$\angle BAC=30^{\circ}; \angle CAD=45^{\circ}$$, тогда $$\angle A=30+45=75^{\circ}$$, и по свойству углов параллелограмма: $$\angle B=180-\angle A=180-75=105^{\circ}$$, что и есть больший угол
Задание 1837
В параллелограмм вписана окружность. Найдите периметр параллелограмма, если одна из его сторон равна 6.
AB+CD=AD+BC (свойство описанного четырехугольника), но AB=CD, AD=BC (свойство параллелограмма), тогда AB=BC=CD=AD, и ABCD - ромб, тогда его периметр $$6*4=24$$
Задание 1838
В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и ∠ACD = 84°. Найдите угол между диагоналями параллелограмма. Ответ дайте в градусах.
AE=EC (свойство диагоналей параллелограмма), тогда AB=AE, следовательно, треугольник ABE - равнобедренный и $$\angle ABE=\angle BEA$$, $$\angle ACD=\angle BAE$$ (накрестлежащие), тогда из треугольника ABE: $$\angle BEA=\frac{180-\angle BAE}{2}=\frac{180-84}{2}=48$$
Задание 1839
Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK = 7, CK = 12.
$$\angle BAK=\angle KAD$$(свойство биссеткрисы), $$\angle BKA=\angle KAD$$ (накрестлежащие углы), следовательно, $$\angle BAK=\angle BKA$$, тогда треугольник ABK - равнобедренный и AB=BK=7, но BC=BK+KC=7+132=19=AD, тогда периметр составит: $$2*(7+19)=52$$
Задание 1841
Найдите острый угол параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 33°. Ответ дайте в градусах.
$$\angle EAD = \angle BEA=33^{\circ}$$ (накрестлежащие), но так как AE - биссектриса, то $$\angle BAE=\angle DAE=33^{\circ}$$, тогда $$\angle A=33+33=66^{\circ}$$
Задание 1842
В равностороннем треугольнике ABC биссектрисы CN и AM пересекаются в точке P. Найдите $$\angle MPN$$.
По свойству биссектрис равностороннего треугольника $$\angle BNP=\angle BMP=90^{\circ}$$, по свойству углов равностороннего треугольника $$\angle B=60^{\circ}$$, тогда по свойству углов выпуклого четырехугольника $$\angle MPN=360-90*2-60=120^{\circ}$$
Задание 1843
В равностороннем треугольнике ABC медианы BK и AM пересекаются в точке O. Найдите $$\angle AOK$$.
По свойству медианы раностороннего треугольника $$\angle AKO =90^{\circ}$$ и $$\angle OAK=\frac{1}{2}\angle A$$, по свойству углов равностороннего треугольника: $$\angle A=60^{\circ}\Rightarrow$$$$\angle OAK=30^{\circ}\Rightarrow$$$$\angle AOK=90-\angle OAK=60^{\circ}$$
Задание 1844
В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине C равен 123°. Найдите величину угла ABC. Ответ дайте в градусах.
По свойству смежных углов: $$\angle BCA=180-\angle BCD=180-123=57^{\circ}$$, так как треугольник равнобедренный, то $$\angle A=\angle BCA=57^{\circ}$$, следовательно по свойству улов треугольника $$\angle ABC=180-57*2=66^{\circ}$$
Задание 1845
Боковая сторона равнобедренного треугольника равна 5. Угол при вершине, противолежащий основанию, равен 120°. Найдите диаметр окружности, описанной около этого треугольника.
Пусть угол B равен 120 градусам, тогда $$\smile AC = 240^{\circ}$$ (по свойству вписанного угла), тогда меньшая дуга CA равна $$360-240=120^{\circ}$$, и центральный угол, опирающийся на эту дугу так же составляет 120 градусов ($$\angle AOC$$). Так как треугольники ABC и ACO равнобедренные, имею общую сторону и равные углы против этой стороны, то они между собой равны, следовательно, AO=5=r, где r - радиус окружности, следовательно, диаметр окружности равен 10
Задание 1846
Площадь равнобедренного треугольника равна $$196\sqrt{3}$$. Угол, лежащий напротив основания равен 120°. Найдите длину боковой стороны.
Площадь треугольника можно выразить как половину произведения сторон треугольник на синус угла между ними, пусть х - боковая сторона треугольника, тогда $$196\sqrt{3}=\frac{1}{2}x^{2}*\sin 120^{\circ}\Leftrightarrow$$$$x=\sqrt{\frac{196\sqrt{3}*2}{\frac{\sqrt{3}}{2}}}=28$$
Задание 1847
Периметр равнобедренного треугольника равен 196, а основание — 96. Найдите площадь треугольника.
Найдем боковую сторону данного треугольника: $$\frac{196-96}{2}=50$$, полупериметр данного треугольника $$p=\frac{196}{3}=98$$, тогда по формуле Герона площадь данного треугольника: $$S=\sqrt{98(98-50)(98-50)(98-96)}=48*14=672$$
Задание 1848
Точка D на стороне AB треугольника ABC выбрана так, что AD = AC. Известно, что ∠CAB = 80° и ∠ACB=59°. Найдите угол DCB. Ответ дайте в градусах.
Так как AD=AC, то треугольник ADC - равнобедренный и $$\angle ADC=\angle ACD=\frac{180-\angle CAB}{2}=50^{\circ}$$, тогда $$\angle DCB=\angle ACB-\angle ACD=59-50=9^{\circ}$$
Задание 1849
Высота равностороннего треугольника равна $$15\sqrt{3}$$. Найдите его периметр.
По свойству высоты равностороннего треугольника $$\angle AHC=90^{\circ}$$ , тогда из треугольника AHC: $$AC=\frac{AH}{\sin ACH}$$, $$\angle ACH=60^{\circ}$$ ( по свойству углов равностороннего треугольника), следовательно, $$AC=\frac{15\sqrt{3}}{\frac{\sqrt{3}}{2}}=30$$, тогда периметр треугольника составит: $$30*3=90$$
Задание 1850
В треугольнике ABC AB = BC = 53, AC = 56. Найдите длину медианы BM.
По свойству медианы в равнобедренном треугольнике: $$MC=\frac{1}{2}AC=28$$, из прямоугольного треугольника BMC по теореме Пифагора: $$BM=\sqrt{BC^{2}-MC^{2}}=\sqrt{53^{2}-28^{2}}=45$$
Задание 1851
Боковая сторона равнобедренного треугольника равна 10, а основание равно 12. Найдите площадь этого треугольника.
Воспользуемся формулой Герона для нахождения площади треугольника. Найдем полупериметр: $$p=\frac{10+10+12}{2}=16$$, тогда $$S=\sqrt{16*(16-10)(16-10)(16-12)}=48$$
Задание 1852
Сторона равностороннего треугольника равна $$12\sqrt{3}$$. Найдите биссектрису этого треугольника.
По свойству биссектрисы равностороннего трекугольника $$\angle AHC=90^{\circ}$$, тогда из треугольника AHC: $$AH=AC*\sin ACH$$, $$\angle ACH=60^{\circ}$$( по свойству углов равностороннего треугольника), следовательно, $$AH=12\sqrt{3}*\frac{\sqrt{3}}{2}=18$$
Задание 1853
В треугольнике ABC AC = BC. Внешний угол при вершине B равен 140°. Найдите угол C. Ответ дайте в градусах.
$$\angle ABC=180-\angle CBD=180-140=40^{\circ}$$ (по свойству смежных углов), но так как AC=BC, то $$\angle CAB=\angle CBA=40^{\circ}$$, тогда $$\angle C=180-40*2=100$$(по свойству углов треугольника)
Задание 1855
Площадь ромба равна 27, а периметр равен 36. Найдите высоту ромба.
Сторона ромба равна $$\frac{36}{4}=9$$, из формулы площади ромба:$$h=\frac{S}{a}=\frac{36}{9}=4$$, где h - высота, a - сторона ромба.
Задание 1857
Точка O — центр окружности, на которой лежат точки P, Q и R таким образом, что OPQR — ромб. Найдите угол ORQ. Ответ дайте в градусах.
OP=OR=PQ=QR ( по свойству ромба ), тогда, так как PR - общая, то треугольники POR И PQR равны, следовательно, $$\angle O=\angle Q$$. Пусть $$\angle Q=x$$, тогда большая дуга PR=2x (по свойству вписанного угла), тогда меньшая дуга RP=360-2x и $$\angle O=360-2x$$ ( по свойству центрального угла ), тогда $$x=360-2x\Leftrightarrow$$$$x=120$$, то есть $$\angle O=120^{\circ}$$, тогда по свойству углов ромба $$\angle P=180-\angle O=60^{\circ}$$
Задание 1858
Найдите больший угол равнобедренной трапеции ABCD, если диагональ AC образует с основанием AD и боковой стороной AB углы, равные 30° и 45° соответственно.
$$\angle A=\angle BAC+\angle CAD=30+45=75^{\circ}$$, тогда по свойству углов трапеции: $$\angle B=180-\angle A=105^{\circ}$$
Задание 1860
Сумма двух углов равнобедренной трапеции равна 140°. Найдите больший угол трапеции. Ответ дайте в градусах.
Так как дана равнобедренная трапеция, то сумма острых углов при большем основании будет составлять 140 градусов, $$\angle A=\angle B=\frac{140}{2}=70^{\circ}$$, по свойству углов трапеции: $$\angle D=180-\angle A=110^{\circ}$$
Задание 1861
Найдите меньший угол равнобедренной трапеции, если два ее угла относятся как 1:2. Ответ дайте в градусах.
Пусть меньший угол равен х, тогда больший угол равен 2х. По свойству углов трапеции получаем, что $$x+2x=180\Leftrightarrow$$$$x=60$$, то есть меньший угол составляет $$60^{\circ}$$
Задание 1863
Тангенс острого угла прямоугольной трапеции равен $$\frac{5}{6}$$. Найдите её большее основание, если меньшее основание равно высоте и равно 15.
Опустим высоту CF, тогда из прямоугольного треугольника CFB: $$FB=\frac{CF}{tgB}=\frac{15}{\frac{5}{6}}=18$$. DC=AF=15, тогда AB=15+18=33.
Задание 1864
В равнобедренной трапеции известны высота 4, меньшее основание 8 и угол при основании $$45^{\circ}$$. Найдите большее основание.
Опустим высоты DE=CF=4, тогда из прямоугольного треугольника ADE: так как $$\angle A=45^{\circ}$$, то $$\angle ADE=90-45=45^{\circ}$$, следовательно, реугольник AED - равнобедренный, и AE=DE=4, аналогично FB=4. Но EF=DC=8, тогда AB=4+4+8=16.
Задание 1865
Основания трапеции равны 4 и 10. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из её диагоналей.
EG - средняя линия треугольника ADB, тогда $$EG=\frac{1}{2}=AB=5$$, аналогично GF - средняя линия треугольника DCB, тогда $$GF=\frac{1}{2}DC=2$$, наибольший в таком случае равен 5
Примечение: больший из отрезков всегда будет равен половине большего основания
Задание 1866
Основания равнобедренной трапеции равны 50 и 104, боковая сторона 45. Найдите длину диагонали трапеции.
Опустим две высоты DE=CF, тогда AE=FB (из равенства прямоугольных треугольников ADE и CFB по катету и гипотенузе), и DC=EF=50, тогда $$AE=FB=\frac{104-50}{2}=27$$. Тогда из прямоугольного треугольника ADE : $$DE=\sqrt{AD^{2}-AE^{2}}=\sqrt{45^{2}-27^{2}}=36$$, следовательно, EB=AB-AE=104-27=77. Тогда из прямоугольного треугольника DEB: $$DB=\sqrt{DE^{2}+EB^{2}}=\sqrt{77^{2}+36^{2}}=85$$
Задание 1867
Около трапеции, один из углов которой равен 49°, описана окружность. Найдите остальные углы трапеции.
Запишите величины углов в ответ через точку с запятой в порядке неубывания.
По свойству вписанного четырехугольник $$\angle A+\angle C=180^{\circ}$$, пусть $$\angle A=49^{\circ}\Rightarrow$$$$\angle C=180-49=131^{\circ}$$. По свойству углов трапеции $$\angle B=180-\angle C=180-131=49^{\circ}$$, аналогично $$\angle D=180-\angle A=131^{\circ}$$
Задание 1868
В трапецию, сумма длин боковых сторон которой равна 24, вписана окружность. Найдите длину средней линии трапеции.
По свойству описанного четырехугольника AD+BC=AB+CD, тогда сумма оснований тоже 24, средняя линия же равна полусумме оснований, то есть 24/2=12.
Задание 1869
У треугольника со сторонами 16 и 2 проведены высоты к этим сторонам. Высота, проведённая к первой стороне, равна 1. Чему равна высота, проведённая ко второй стороне?
Из формулы площади треугольника: $$S=\frac{1}{2}AL*BC=\frac{1}{2}AC*BD$$ , тогда пусть AC=16, BC=2, BD=1, получаем, что $$AL=\frac{AC*BD}{BC}=8$$
Задание 1870
В треугольнике ABC проведена биссектриса AL, угол ALC равен 112°, угол ABC равен 106°. Найдите угол ACB. Ответ дайте в градусах.
Задание 1871
В треугольнике ABC проведены медиана BM и высота BH . Известно, что AC = 84 и BC = BM. Найдите AH.
Треугольник BMC - равнобедренный, следовательно, по свойству высоты равнобедренного треугольника BH - медиана, и $$MH=HC=\frac{1}{2}MC$$
BM - медиана в треугольнике ABC, следовательно, $$AM=MC=\frac{1}{2}AC$$, тогда $$MH=\frac{1}{2}AM=\frac{1}{4}AC$$, то есть $$AH=\frac{3}{4}AC=63$$
Задание 1872
В остроугольном треугольнике ABC высота AH равна $$20\sqrt{3}$$,а сторона AB равна 40. Найдите $$\cos B$$.
Из прямоугольного треугольника ABH: $$\cos B=\frac{BH}{AB}$$, по теореме Пифагора: $$BH=\sqrt{AB^{2}-AH^{2}}=\sqrt{1600-400*3}=20$$, тогда $$\cos B=\frac{20}{40}=0,5$$
Задание 1873
В треугольнике ABC AB = BC, а высота AH делит сторону BC на отрезки BH = 64 и CH = 16. Найдите cos B.
Задание 1874
В треугольнике ABC BM — медиана и BH – высота. Известно, что AC = 216, HC = 54 и ∠ACB = 40°. Найдите угол AMB. Ответ дайте в градусах.
Задание 1875
Углы B и C треугольника ABC равны соответственно 65° и 85°. Найдите BC, если радиус окружности, описанной около треугольника ABC, равен 14.
По свойству углов треугольника: $$\angle A=180-\angle B -\angle C=180-85-65=30^{\circ}$$
По теореме синусов: $$BC=2R*\sin A$$, где R - радиус описанной окружности около треугольника ABC, тогда $$BC=2*14*\sin 30^{\circ}=14$$
Задание 1877
В треугольнике два угла равны 43° и 88°. Найдите его третий угол. Ответ дайте в градусах.
По свойству углов треугольника: $$\angle 3=180-\angle 1 -\angle 2=180-43-88=49^{\circ}$$
Задание 1878
Точки M и N являются серединами сторон AB и BC треугольника ABC, сторона AB равна 66, сторона BC равна 37, сторонa AC равна 74. Найдите MN.
Так как M и N середины сторон, то отрезок MN является средней линией, которая, в свою очередь равна половине стороны, которой она параллельна, то есть AC, тогда MN=0,5AC=37
Задание 1894
Два острых угла прямоугольного треугольника относятся как 4:5. Найдите больший острый угол. Ответ дайте в градусах.
Пусть меньший угол равен 4х, тогда больший - 5х. По свойству суммы острых углов прямоугольного треугольника: $$4x+5x=90\Leftrightarrow$$$$x=10$$, тогда больший угол $$5*10=50^{\circ}$$
Задание 1895
В треугольнике ABC угол C равен 90°, AC=15, $$\cos A=\frac{5}{7}$$. Найдите AB.
По определению косинуса: $$AB=\frac{AC}{\cos A}=\frac{15}{\frac{5}{7}}=21$$
Задание 1896
В треугольнике ABC угол C равен 90°, BC=12, $$\sin A=\frac{4}{11}$$. Найдите AB.
По определению синуса: $$AB=\frac{BC}{\sin A}=\frac{12}{\frac{4}{11}}=33$$
Задание 1897
В треугольнике ABC угол C равен 90°, AC = 20, tgA = 0,5. Найдите BC.
По определению тангенса: $$CB=AC*tg A=20*0,5=10$$
Задание 1898
В треугольнике ABC угол C равен 90°, BC = 20, $$\tan A=0,5$$. Найдите AC.
Из определения тангенса угла: $$AC=\frac{BC}{tg A}=\frac{20}{0,5}=40$$
Задание 1899
Катеты прямоугольного треугольника равны 35 и 120. Найдите высоту, проведенную к гипотенузе.
Найдем гипотенузу треугольника по теореме Пифагора: $$\sqrt{35^{2}+120^{2}}=125$$
Высоту прямоугольного треугольника, опущенного из прямого угла можно выразить как: $$h=\frac{ab}{c}$$, где a,b - катеты, с - гипотенуза, тогда $$h=\frac{35*120}{125}=33,6$$
Задание 1900
Катеты прямоугольного треугольника равны $$\sqrt{15}$$ и 1. Найдите синус наименьшего угла этого треугольника.
Найдем гипотенузу по теореме Пифагора: $$\sqrt{(\sqrt{15})^{2}+1^{2}}=4$$
Напротив меньшей стороны лежит меньший угол, то есть меньший угол лежит напротив катета, равного 1, тогда $$\sin \alpha=\frac{1}{4}=0,25$$
Задание 1901
Площадь прямоугольного треугольника равна $$32\sqrt{3}$$. Один из острых углов равен 30°. Найдите длину гипотенузы.
Пусть катет, лежащий напротив угла в 30 градусов равен х, тогда по свойству катета, лежащего напротив угла в 30 градусов, гипотенуза равна 2х.
По теореме Пифагора третий катет будет равен: $$\sqrt{(2x)^{2}-x^{2}}=\sqrt{3}x$$
Распишем площадь треугольника как половину произведения его катетов:$$\frac{1}{2}x*\sqrt{3}x=32\sqrt{3}\Leftrightarrow$$$$x^{2}=64\Leftrightarrow$$$$x=8$$, тогда гипотенуза составит $$2*8=16$$
Задание 1902
В треугольнике ABC угол C равен 90°, AC=12, $$\tan A=\frac{2\sqrt{10}}{3}$$. Найдите AB.
Из определения тангенса угла: $$CB=AC*tg A=8\sqrt{10}$$
По теореме Пифагора: $$AB=\sqrt{AC^{2}+CB^{2}}=\sqrt{144+640}=28$$
Задание 1903
Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC. Найдите AB, если AH = 6, AC = 24.
Из подобия треугольников BHA и ABC (по свойтсву высоты прямоугольного треугольника, проведенной из вершины прямого угла): $$\frac{HA}{AB}=\frac{AB}{AC}\Leftrightarrow$$$$AB=\sqrt{HA*AC}=12$$
Задание 1904
В прямоугольном треугольнике ABC катет AC равен 35, а высота CH, опущенная на гипотенузу, равна $$14\sqrt{6}$$. Найдите $$\sin\angle ABC$$.
По свойству высоты прямоугольного треугольника, опущенной из прямого угла: $$\angle ACH=\angle ABC$$
Тогда из треугольника ACH: $$\cos ACH=\frac{CH}{AC}=\frac{14\sqrt{6}}{35}=\frac{2\sqrt{6}}{5}$$
По основному тригонометрическому тождеству: $$\sin ACH=\sqrt{1-\cos^{2} ACH}=\sqrt{\frac{24}{25}}=\frac{1}{5}$$.
Задание 1906
Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 12 и 13.
По теореме Пифагора найдем второй катет: $$\sqrt{13^{2}-12^{2}}=5$$
Найдем площадь прямоугольного треугольника как половину произведения длин его катетов :$$\frac{1}{2}*12*5=30$$
Задание 1907
Один из острых углов прямоугольного треугольника равен 23°. Найдите его другой острый угол. Ответ дайте в градусах.
По свойству суммы острых углов прямоугольного треугольника второй острый угол будет равен: $$90-23=67^{\circ}$$
Задание 1908
В треугольнике ABC известно, что AC=14, $$BC=\sqrt{165}$$, угол C равен 90°. Найдите радиус описанной окружности этого треугольника.
Радиус описанной окружности около прямоугольного треугольника равен половине его гипотенузы, тогда по теореме Пифагора: $$AB=\sqrt{AC^{2}+CB^{2}}=\sqrt{361}=19$$, тогда радиус описанной окружности составляет 9,5
Задание 1909
Радиус OB окружности с центром в точке O пересекает хорду AC в точке D и перпендикулярен ей. Найдите длину хорды AC, если BD = 1 см, а радиус окружности равен 5 см.
1) $$OD=AB-BD=4$$
2) Треугольник OAD - прямоугольный, тогда по теореме Пифагора: $$AD=\sqrt{5^{2}-4^{2}}=3$$
3) OA=AC, OD - общая, тогда прямоугольные треугольники AOD и ODC равны, следовательно, AD=DC=3, и AC=6
Задание 1910
Найдите величину (в градусах) вписанного угла α, опирающегося на хорду AB, равную радиусу окружности.
1) Треугольник OAB - равносторонний, тогда $$\angle AOB = 60^{\circ}=\smile AB$$
2) $$\angle ADB=\angle \alpha=\frac{1}{2}\smile AB=30^{\circ}$$ (по свойству вписанного угла)
Задание 1911
К окружности с центром в точке О проведены касательная AB и секущая AO. Найдите радиус окружности, если AB = 12 см, AO = 13 см.
1) По свойству радиуса и касательной $$OB\perp AB$$, тогда треугольник OAB - прямоугольный
2) По теореме Пифагора $$OB=\sqrt{13^{2}-12^{2}}=5$$
Задание 1914
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3:4:11. Найдите радиус окружности, если меньшая из сторон равна 14.
Задание 1915
Прямая касается окружности в точке K. Точка O — центр окружности. Хорда KM образует с касательной угол, равный 83°. Найдите величину угла OMK. Ответ дайте в градусах.
Треугольник OMK - равнобедренный (OM=OK - радиусы), тогда $$\angle OMK=\angle OKM$$
По свойству касательной и радиуса OK и касательная - перпендикулярны, тогда $$\angle OKM=90-83=7^{\circ}$$, тогда и угол OMK те же 7 градусов
Задание 1917
Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CD, если AB = 18, CD = 24, а расстояние от центра окружности до хорды AB равно 12.
Задание 1918
На окружности с центром O отмечены точки A и B так, что ∠AOB = 66°. Длина меньшей дуги AB равна 99. Найдите длину большей дуги.
Если острый угол AOB составляет 66 градуов, то развернутый составляет $$360-66=294^{\circ}$$
Пусть длина большей дуги равна х, тогда:
$$66^{\circ}- 99$$
$$294^{\circ}- x$$
$$x=\frac{294*99}{66}=441$$
Задание 1919
В окружность вписан равносторонний восьмиугольник. Найдите величину угла ABH.
1) Для нахождения угла правильного n-угольника, можно воспользоваться формулой: $$\alpha=\frac{n-2}{n}*180$$
2) $$\angle ABC = \frac{8-2}{8}*180=135^{\circ}$$
3) Из треугольника HOA: $$\angle HOA=180-2\angle OHA=180-\angle H=45^{\circ}$$ (треугольник равнобедренный, OH - биссектрисса угла H)
4) Меньшая дуга $$HA=\angle HOA=45^{\circ}$$ (по свойству центрального угла)
5) $$\angle ABH=\frac{1}{2}\smile HA=22,5^{\circ}$$ (по свойству вписанного угла)
Задание 1921
Боковая сторона равнобедренного треугольника равна 4. Угол при вершине, противолежащий основанию, равен 120°. Найдите диаметр окружности, описанной около этого треугольника.
1) $$\angle ABC=\frac{1}{2}\smile AC$$ (по свойству вписанного угла), тогда $$\smile AC=2*120=240^{\circ}$$ (большая дуга)
2) Вся окружность равна $$360^{\circ}$$, тогда меньшая дуга AC составляет $$120^{\circ}$$
3) $$\angle AOC=\smile AC=120^{\circ}$$ (меньшей дуге, по свойству центрального угла), тогда треугольники ABC и AOC равны (оба равнобедренных, общая сторона), следовательно OC=4, и диаметр составляет 4*2=8
Задание 1922
Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB = BC и ∠ABC = 177°. Найдите величину угла BOC. Ответ дайте в градусах.
1) Треугольник ABC - равнобедренный, $$\angle BAC=\angle BCA=\frac{180-177}{2}=1,5$$.
2) $$\angle BAC=\frac{1}{2}BC$$ (по свойству вписанного угла), тогда $$\smile BC=2*1,5=3^{\circ}$$
3) $$\angle BOC=\smile BC=3^{\circ}$$ (по свойству центрального угла)
Задание 1923
Четырехугольник ABCD вписан в окружность. Угол ABC равен 70°, угол CAD равен 49°. Найдите угол ABD. Ответ дайте в градусах.
1) $$\angle ABC=\frac{1}{2}\smile AC$$ (по свойству вписанного угла), тогда $$\smile AC=140^{\circ}$$
2) $$\angle CAD=\frac{1}{2}\smile DC$$ (по свойству вписанного угла), тогда $$\smile DC=98^{\circ}$$
3) $$\smile AD=140-98=42^{\circ}$$, тогда $$\angle ABD=\frac{1}{2}\smile AD=21^{\circ}$$ (по свойству вписанного угла)
Задание 1925
Центральный угол AOB опирается на хорду AB длиной 6. При этом угол OAB равен 60°. Найдите радиус окружности.
1) Треугольник AOB - равнобедренный (AO=OB - радиусы), тогда $$\angle OAB=\angle OBA=\frac{180-60}{2}=60^{\circ}$$, следовательно, OAB - равносторонний
2) Из п.1 получаем ,что AO=OB=AB=6
Задание 1926
В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен 30°. Найдите величину угла OAB.
1) Треугольники COD и AOD равны, так как CO=OD=OA=OB (радиусы) и $$\angle COD=\angle AOD$$ (вертикальные углы)
2) Тогда $$\angle OAB=\angle CDO=\angle OCD=30^{\circ}$$
Задание 1927
Найдите градусную меру ∠MON, если известно, NP — диаметр, а градусная мера ∠MNP равна 18°.
1) Треугольник MON - равнобедренный (MO=ON - радиусы), тогда $$\angle ONM=\angle OMN$$
2) $$\angle MON=180-2*18=144^{\circ}$$
Задание 1928
Найдите ∠DEF, если градусные меры дуг DE и EF равны 150° и 68° соответственно.
1) $$\smile DF=360-150-68=142^{\circ}$$
2) $$\angle DEF=\frac{142}{2}=71^{\circ}$$ (по свойству вписанного угла)
Задание 1929
Найдите градусную меру ∠ACB, если известно, что BC является диаметром окружности, а градусная мера ∠AOC равна 96°.
1) Треугольник OAC - ранвобедренный (OA=AC - радиусы), тогда $$\angle OAC=\angle OCA$$
2) $$\angle ACB=\angle ACO=\frac{180-96}{2}=42^{\circ}$$
Задание 1930
Найдите ∠KOM, если известно, что градусная мера дуги MN равна 124°, а градусная мера дуги KN равна 180°.
1) Меньшая дуга $$KM=KN-MN=180-124=56^{\circ}$$
2) $$\angle KOM=\smile MM-56^{\circ}$$ (по свойству центрального угла)
Задание 1931
В окружности с центром O AC и BD — диаметры. Угол ACB равен 26°. Найдите угол AOD. Ответ дайте в градусах.
1) $$\angle AOD=\angle COB$$ (по свойству вертикальных углов)
2) $$\angle COB=\angle OBC$$ (треугольник COB - равнобедренный, так как CO и OB - радиусы)
3) Из треугольника COB: $$\angle COB=180-2*26=128^{\circ}$$, тогда и $$\angle AOD=128^{\circ}$$
Задание 1932
Прямоугольный треугольник с катетами 5 см и 12 см вписан в окружность. Чему равен радиус этой окружности?
1) Радиус описанной окружности около прямоугольного треугольника равен половине его гипотенузы. Пусть R - радиус описанной окружности
2) По теореме Пифагора из треугольника ABC: $$AC=\sqrt{12^{2}+5^{2}}=13$$, тогда $$R=\frac{1}{2}AC=6,5$$
Задание 1933
Точки A и B делят окружность на две дуги, длины которых относятся как 9:11. Найдите величину центрального угла, опирающегося на меньшую из дуг. Ответ дайте в градусах.
1) Пусть меньшая дуга 9х, тогда большая дуга 11х
2) $$9x+11x=360\Leftrightarrow$$$$x=18$$ (по свойству градусной меры окружности), тогда меньшая дуга составляет $$9x=9*18=162$$
3) $$\angle AOB=\smile AOB=162^{\circ}$$ (по свойству центрального угла)
Задание 1934
В угол величиной 70° вписана окружность, которая касается его сторон в точках A и B. На одной из дуг этой окружности выбрали точку C так, как показано на рисунке. Найдите величину угла ACB.
1) OA и OB перпенидулярны сторонам угла (по свойству касательной и радиуса в точку касания)
2) Из четырехугольника AEOB: $$\angle AOB=360-2*90-70=110^{\circ}$$ (по свойству суммы углов выпуклого четырехугольника)
3) $$\angle ACB=\frac{1}{2}\angle AOB=55^{\circ}$$ (по свойству вписанного и центрального угла)
Задание 1935
Сторона квадрата равна 10. Найдите его площадь.
Площадь квадрата составляет $$S=a^{2}=10^{2}=100$$
Задание 1936
Периметр квадрата равен 40. Найдите площадь квадрата.
Так как периметр квадрата составляет 40, тогда сторона квадрата равна $$a=\frac{P}{4}=\frac{40}{4}=10$$. Следовательно, площадь квадрата составляет $$S=a^{2}=10^{2}=100$$
Задание 1937
Из квадрата вырезали прямоугольник (см. рисунок). Найдите площадь получившейся фигуры.
Площадь квадрата на данном рисунке составляет $$6^{2}=36$$, площадь прямоугольника составляет $$3*2=6$$, тогда площадь оставшейся фигуры $$36-6=30$$
Задание 1938
Найдите площадь квадрата, если его диагональ равна 1.
Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними. По свойству квадрата, его диагонали равны, а угол между ними составляет 90 градусов.
Тогда площадь квадрата составит $$S=\frac{1}{2}*1*1*\sin 90^{\circ}=0,5$$
Задание 1939
Найдите площадь квадрата, описанного вокруг окружности радиуса 83.
Если квадрат описан около окружности, то диаметр окружности и сторона квадрата равны друг другу, тогда радиус окружности в два раза меньше стороны, то есть сторона квадрата $$a=2r=2*83=166$$.
Тогда площадь квадрата составляет $$S=a^{2}=166^{2}=27556$$
Задание 1940
В прямоугольнике одна сторона равна 10, другая сторона равна 12. Найдите площадь прямоугольника.
По определению площади прямоугольника : $$S=10*12=120$$
Задание 1941
В прямоугольнике диагональ равна 10, а угол между ней и одной из сторон равен 30°. Найдите площадь прямоугольника, делённую на $$\sqrt{3}$$.
- Из треугольника ABC: пусть угол С равен 30 градусам, тогда $$AB=AC*\sin 30^{\circ}=5$$
- Аналогично $$BC=AC*\cos 30^{\circ}=5\sqrt{3}$$
- Площадь прямоугольника в таком случае: $$S=5*5\sqrt{3}=25\sqrt{3}$$, в ответе необходимо указать значение, деленное на $$\sqrt{3}$$, то есть 25
Задание 1942
Найдите площадь прямоугольника, если его периметр равен 44 и одна сторона на 2 больше другой.
- Пусть х - меньшая сторона, тогда х+2 - большая сторона. Из определения периметра прямоугольника: $$(x+x+2)*2=44\Leftrightarrow$$$$x=10$$, тогда меньшая сторона равна 10, большая 12
- Из определения площади прямоугольника: $$S=10*12=120$$
Задание 1943
Найдите площадь прямоугольника, если его периметр равен 60, а отношение соседних сторон равно 4:11.
- Пусть меньшая сторона 4х, тогда большая сторона 11х. По определению периметра прямоугольника: $$(4x+11x)*2=60\Leftrightarrow$$$$x=2$$, тогда меньшая сторона $$4*2=8$$, большая сторона $$11*2=22$$
- Из формулы площади прямоугольника $$S=8*22=176$$
Задание 1944
В прямоугольнике одна сторона равна 96, а диагональ равна 100. Найдите площадь прямоугольника.
1) Из треугольника ABC по теореме Пифагора: $$AB=\sqrt{100^{2}-96^{2}}=28$$
2) Из формулы площади прямоугольника: $$S=96*28=2688$$
Задание 1945
На стороне BC прямоугольника ABCD, у которого AB = 12 и AD = 17, отмечена точка E так, что ∠EAB = 45°. Найдите ED.
1) $$\angle EAB=45^{\circ}$$ и $$\angle B=90^{\circ}$$, тогда $$\angle AEB=45^{\circ}$$ (по сумме углов треугольника), следовательно, AEB - равнобедренный, и AB=BE=12
2) EC=BC-BE=17-12=5, DC=AB=12, тогда по теоереме Пифагора из треугольника DCE: $$ED=\sqrt{12^{2}+5^{2}}=13$$
Задание 1946
В прямоугольном треугольнике один из катетов равен 10, а угол, лежащий напротив него, равен 45°. Найдите площадь треугольника.
- Если один острый угол прямоугольного треугольника составляет 45 градусов, то и другой угол также равен $$90-45=45^{\circ}$$, тогда треугольник равнобедренный, и катеты равны
- По определению площади прямоугольного треугольника: $$S=\frac{1}{2}*10*10=50$$
Задание 1947
В прямоугольном треугольнике один из катетов равен 10, острый угол, прилежащий к нему, равен 60°, а гипотенуза равна 20. Найдите площадь треугольника, делённую на $$\sqrt{3}$$.
- Пусть AB=10, $$\angle A=60^{\circ}$$, тогда из определения тангенса $$BC=AB*tg A=10\sqrt{3}$$
- Из определения площади прямоугольного треуольника $$S=\frac{1}{2}*10*10\sqrt{3}=50\sqrt{3}$$, ответ необходимо указать деленный на $$\sqrt{3}$$, то есть 50
Задание 1948
Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 28 и 100.
- Пусть b - второй катет, тогда по теореме Пифагора: $$b=\sqrt{100^{2}-28^{2}}=96$$
- По определению площади прямоугольного треугольника : $$S=\frac{1}{2}*96*28=1344$$
Задание 1949
В прямоугольном треугольнике один из катетов равен 4, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.
- Пусть BC=4, тогда $$\angle C=45^{\circ}$$, тогда $$\angle A=90-45=45^{\circ}$$, следовательно, треугольника ABC - равнобедренный и AB=BC
- По определению площади прямоугольного треугольника $$S=\frac{1}{2}*4*4=8$$
Задание 1950
В прямоугольном треугольнике гипотенуза равна 70, а один из острых углов равен 45°. Найдите площадь треугольника.
- $$AB=AC*\sin 45^{\circ}=$$$$70*\frac{\sqrt{2}}{2}=35\sqrt{2}$$
- $$BC=AC*\cos 45^{\circ}=$$$$70*\frac{\sqrt{2}}{2}=35\sqrt{2}$$
- Площадь треугольника в таком случае: $$S=\frac{1}{2}*35\sqrt{2}*35\sqrt{2}=1225$$
Задание 1951
Катеты прямоугольного треугольника равны 8 и 15. Найдите гипотенузу этого треугольника.
По теореме Пифагора $$c=\sqrt{8^{2}+15^{2}}=17$$, где с - гипотенуза данного треугольника.
Задание 1952
Два катета прямоугольного треугольника равны 4 и 9. Найдите площадь этого треугольника.
По определению площади прямоугольного треугольника: $$S=\frac{1}{2}4*9=18$$
Задание 1953
Сторона равностороннего треугольника равна 10. Найдите его площадь, делённую на $$\sqrt{3}$$.
Из формулы площади треугольника: $$S=\frac{1}{2}*10*10*\sin 60^{\circ}=25\sqrt{3}$$, в ответе необходимо указать значение без $$\sqrt{3}$$, то есть 25
Задание 1954
Периметр равностороннего треугольника равен 30. Найдите его площадь, делённую на $$\sqrt{3}$$.
- Пусть a - сторона равностороннего треугольника, тогда $$a=\frac{P}{3}=10$$
- Из формулы площади треугольника: $$S=\frac{1}{2}*10*10*\sin 60^{\circ}=25\sqrt{3}$$, в ответе необходимо указать значение без $$\sqrt{3}$$, то есть 25
Задание 1955
Высота равностороннего треугольника равна 10. Найдите его площадь, делённую на $$\frac{\sqrt{3}}{3}$$.
- Из треугольника ACH: $$AC=\frac{CH}{\sin A}=\frac{10}{\frac{\sqrt{3}}{2}}=\frac{20}{\sqrt{3}}$$
- Так как треугольник равносторонний, то AC=AB, тогда из формулы площади треугольника: $$S=\frac{1}{2}CH*AB=\frac{100}{\sqrt{3}}$$. В ответе необходимо указать результат, деленный на $$\frac{\sqrt{3}}{3}$$: $$\frac{100}{\sqrt{3}}:\frac{\sqrt{3}}{3}=100$$
Задание 1956
В равнобедренном треугольнике боковая сторона равна 10, а угол, лежащий напротив основания, равен 120°. Найдите площадь треугольника, делённую на $$\sqrt{3}$$
По формуле площади треугольника $$S=\frac{10*10*\sin 120^{\circ}}{2}=\frac{1}{2}*10*10*\frac{\sqrt{3}}{2}=25\sqrt{3}$$. В ответе необходимо указать ответ, деленный на $$\sqrt{3}$$, то есть 25
Задание 1957
В равнобедренном треугольнике боковая сторона равна 10, основание — $$5(\sqrt{6}-\sqrt{2})$$, а угол, лежащий напротив основания, равен 30°. Найдите площадь треугольника.
По формуле площади треугольника $$S=\frac{AB*AC*\sin B}{2}=\frac{1}{2}*10*10*\frac{1}{2}=25$$
Задание 1958
В равнобедренном треугольнике ABC AC=BC. Найдите AC, если высота CH=12, AB=10.
- По свойству высоты равнобедренного треугольника, проведенной к основанию: $$AH=HB=\frac{1}{2}AB=5$$
- По теореме Пифагора из треугольника ACH: $$AC=\sqrt{12^{2}+5^{2}}=13$$
Задание 1959
Боковая сторона равнобедренного треугольника равна 34, а основание равно 60. Найдите площадь этого треугольника.
- Найдем полупериметр данного треугольника: $$p=\frac{34*2+60}{2}=64$$
- По формуле Герона: $$S=\sqrt{64(64-34)^{2}(64-60)}=480$$
Задание 1960
Периметр равнобедренного треугольника равен 216, а боковая сторона — 78. Найдите площадь треугольника.
- Найдем основание равнобедренного треугольника : $$216-2*78=60$$
- Полупериметр данного треугольника: $$p=\frac{216}{2}=108$$. По формуле Герона: $$S=\sqrt{108(108-78)^{2}(108-60)}=2160$$
Задание 1965
Основания трапеции равны 18 и 12, одна из боковых сторон равна 6, а синус угла между ней и одним из оснований равен $$\frac{1}{3}$$. Найдите площадь трапеции.
- Опустим высоту CE. Пусть $$\sin D=\frac{1}{3}$$, тогда из прямоугольного треугольника CED: $$CE=CD*\sin D=2$$
- Из формулы площади трапеции: $$S_{ABCD}=\frac{18+12}{2}*2=30$$
Задание 1966
Основания трапеции равны 18 и 12, одна из боковых сторон равна 6, а косинус угла между ней и одним из оснований равен $$\frac{2\sqrt{2}}{3}$$. Найдите площадь трапеции.
- Пусть $$\cos D =\frac{2\sqrt{2}}{3}$$, опустим высоту CE. Тогда из треугольника CED: $$ED=CD*\cos D=6*\frac{2\sqrt{2}}{3}=4\sqrt{2}$$
- По теореме Пифагора из треугольника CED: $$CE=\sqrt{6^{2}-(4\sqrt{2})^{2}}=2$$
- Из формулы площади трапеции $$S_{ABCD}=\frac{18+12}{2}*2=30$$
Задание 1967
Средняя линия трапеции равна 11, а меньше основание равно 5. Найдите большее основание трапеции.
Пусть a - большее основание, тогда из формулы длины средней линии трапеции : $$a=2*11-5=17$$
Задание 1968
Боковая сторона трапеции равна 5, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 3 и 9.
- Пусть $$\angle D=30^{\circ}$$. Опустим высоту CE, тогда из прямоугольного треугольника CED: $$CE=CD*\sin D=2,5$$
- По формуле площади трапеции $$S_{ABCD}=\frac{3+9}{2}*2,5=15$$
Задание 1969
В равнобедренной трапеции основания равны 3 и 9, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции.
- Опустим высоты CE и BF. Тогда FE=BC=3, $$AF=ED=\frac{AD-FE}{2}=3$$ (из равенства прямоугольных треугольников ABF и CED)
- Пусть $$\angle D=45^{\circ}$$, тогда треугольник CED - равнобедренный ($$\angle ECD=90-45=45=\angle D$$), тогда CE=ED=3
- Из формулы площади трапеции: $$S_{ABCD}=\frac{3+9}{2}*3=18$$
Задание 1971
Основания равнобедренной трапеции равны 5 и 17, а ее боковые стороны равны 10. Найдите площадь трапеции.
- Опустим высоты BF и CE, тогда треугольники ABF и CED равны по гипотенузе и катету, следовательно, FE=BC=5, $$AF=ED=\frac{AD-BC}{2}=6$$
- Из прямоугольного треугольника ABF по теореме Пифагора $$BF=\sqrt{10^{2}-6^{2}}=8$$
- Площадь трапеции ABCD: $$S=\frac{5+17}{2}*8=88$$
Задание 1972
Основания трапеции равны 1 и 13, одна из боковых сторон равна $$15\sqrt{2}$$, а угол между ней и одним из оснований равен 135°. Найдите площадь трапеции.
- Пусть $$\angle C=135^{\circ}, CD=15\sqrt{2}$$. Опустим высоту CE , тогда $$\angle ECD=135-90=45^{\circ}$$, следовательно, треугольник CDE - прямоугольный и равнобедренный
- Из треугольника CDE -$$CE=CD*\sin ECD=15\sqrt{2}*\frac{\sqrt{2}}{2}=15$$
- Площадь трапеции $$S_{ABCD}=\frac{1+13}{2}*15=105$$
Задание 1973
В трапеции ABCD AD = 5, BC = 2, а её площадь равна 28. Найдите площадь трапеции BCNM, где MN – средняя линия трапеции ABCD.
- Из формулы площади трапеции $$BE=\frac{2S_{ABCD}}{AD+BC}=\frac{2*28}{5+2}=8$$
- $$BF=FE=\frac{1}{2}BE=4$$ так как MN - средняя линия трапеции, $$MN=\frac{BC+AD}{2}=\frac{2+5}{2}=3,5$$
- Площадь трапеции BCNM: $$S=\frac{BC+MN}{2}*BF=\frac{2+3,5}{2}*4=11$$
Задание 1974
В трапеции ABCD AD = 3, BC = 1, а её площадь равна 12. Найдите площадь треугольника ABC.
- Из площади трапеции $$AE=\frac{2S_{ABCD}}{BC+AD}=\frac{2*12}{3+1}=6$$
- Из формулы площади треугольника: $$S_{ABC}=\frac{1}{2}BC*AE=\frac{1}{2}*6*1=3$$
Задание 1975
В треугольнике одна из сторон равна 10, а опущенная на нее высота — 5. Найдите площадь треугольника.
По формуле площади треугольника $$S=\frac{1}{2}*10*5=25$$
Задание 1976
В треугольнике одна из сторон равна 10, другая равна $$10\sqrt{3}$$, а угол между ними равен 60°. Найдите площадь треугольника.
По формуле площади треугольника $$S=\frac{1}{2}10*10\sqrt{3}*\sin 60^{\circ}=75$$
Задание 1981
В треугольнике ABC отрезок DE — средняя линия. Площадь треугольника CDE равна 45. Найдите площадь треугольника ABC.
- Так как DE - средняя линия, то $$DE=\frac{1}{2}AC$$, но тогда $$S_{CDE}=\frac{1}{2}S_{ADC}$$ (у них одинаковая высота, но различные в два раза основания). То есть $$S_{ADC}=2*45=90$$, тогда $$S_{ADEC}=135$$
- Треугольники ABC и DBE подобны (по свойству средней линии), при это $$k=\frac{1}{2}$$ - коэффициент подобия, тогда $$\frac{S_{BDE}}{S_{ABC}}=k^{2}=\frac{1}{4}$$, тогда $$S_{BDE}=\frac{1}{4}S_{ABC}$$, следовательно, $$S_{ADEC}=\frac{3}{4}S_{ABC}$$. Получаем, что $$S_{ABC}=\frac{4}{3}S_{ADEC}=180$$
Задание 1982
Сторона треугольника равна 12, а высота, проведённая к этой стороне, равна 33. Найдите площадь этого треугольника.
Из формулы площади треугольника $$S=\frac{1}{2}*12*33=198$$
Задание 1985
Периметр ромба равен 40, а один из углов равен 30°. Найдите площадь ромба.
- Пусть a - сторона ромба, тогда $$a=\frac{40}{4}=10$$
- Найдем площадь ромба: $$S=10*10*\sin 30^{\circ}=50$$
Задание 1986
Периметр ромба равен 24, а синус одного из углов равен $$\frac{1}{3}$$. Найдите площадь ромба.
- Пусть a - сторона ромба, тогда $$a=\frac{24}{4}=6$$
- Найдем площадь ромба: $$S=6*6*\frac{1}{3}=12$$
Задание 1987
Одна из сторон параллелограмма равна 12, а опущенная на нее высота равна 10. Найдите площадь параллелограмма.
Из формулы площади параллелограмма: $$S=12*10=120$$
Задание 1988
Одна из сторон параллелограмма равна 12, другая равна 5, а один из углов — 45°. Найдите площадь параллелограмма, делённую на $$\sqrt{2}$$.
Из формулы площади параллелограмма: $$S=12*5*\sin 45=30\sqrt{2}$$. В ответе необходимо найти указать ответ, деленный на $$\sqrt{2}$$, то есть 30
Задание 1990
Площадь параллелограмма ABCD равна 56. Точка E — середина стороны CD. Найдите площадь трапеции AECB.
- Найдем площадь треугольника AED: $$S_{AED}=\frac{1}{2}ED*h=\frac{1}{4}CD*h=\frac{1}{4}S_{ABCD}$$, где h - высота параллелограмма
- Тогда $$S_{AECB}=\frac{3}{4}S_{ABCD}=42$$
Задание 1991
Найдите площадь ромба, если его диагонали равны 14 и 6.
Из формулы площади ромба: $$S=\frac{1}{2}*14*6=42$$
Задание 1992
Сторона ромба равна 9, а расстояние от центра ромба до неё равно 1. Найдите площадь ромба.
- Из треугольника AED: $$S_{AED}=\frac{1}{2}*1*9=4,5$$
- Ромб состоит из четырех равных прямоугольных треугольников, образованных диагоналями ромба, тогда $$S_{ABCD}=4S_{AED}=18$$
Задание 1993
Сторона ромба равна 50, а диагональ равна 80. Найдите площадь ромба.
- Пусть BD=80, тогда по свойству диагоналей ромба: $$ED=\frac{1}{2}BD=40$$
- Из прямоугольного треугольника EAD: $$EA=\sqrt{50^{2}-40^{2}}=30$$, тогда AC=60
- Из формулы площади ромба: $$S=\frac{1}{2}*80*60=2400$$
Задание 1994
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH = 1 и HD = 28. Диагональ параллелограмма BD равна 53. Найдите площадь параллелограмма.
- Из прямоугольного треуголььника BDH : $$BH=\sqrt{53^{2}-28^{2}}=45$$
- $$AD=AH+AD=29$$, тогда площадь параллелограмма $$S=45*29=1305$$
Задание 1995
Высота BH ромба ABCD делит его сторону AD на отрезки AH = 5 и HD = 8. Найдите площадь ромба.
- $$AD=AH+HD=5+8=13$$, тогда по свойству ромба $$AB=13$$
- Из прямоугольного треугольника ABH: $$BH=\sqrt{13^{2}-5^{2}}=12$$
- Из формулы площади ромба $$S=12*13=156$$
Задание 1996
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 30° и 45° . Найдите больший угол параллелограмма. Ответ дайте в градусах.
- Пусть $$\angle BAC=30^{\circ} ; \angle CAD=45^{\circ}$$, тогда $$\angle A=30+45=75^{\circ}$$
- По свойству углов параллелограмма: $$\angle B=180-75=105^{\circ}$$ - это и есть больший угол
Задание 3572
Стороны четырехугольника ABCD AB, BC, CD и AD стягивают дуги описанной окружности, градусные величины которых равны соответственно $$95^{\circ}$$, $$49^{\circ}$$, $$71^{\circ}$$, $$145^{\circ}$$. Найдите угол B этого четырехугольника. Ответ дайте в градусах.