Перейти к основному содержанию

ЕГЭ Профиль

Задачи с прикладным содержанием

Показательные уравнения и неравенства

 
Аналоги к этому заданию:

Задание 10257

В ходе распада радиоактивного изотопа его масса уменьшается по закону $$m(t)=m_{0}\cdot 2-\frac{t}{T}$$, где $$m_{0}$$ ‐ начальная масса изотопа, t (мин) – прошедшее от начального момента время, T ‐ период полураспада в минутах. В лаборатории получили вещество, содержащее в начальный момент времени m0=156 мг изотопа, период полураспада которого T=8 мин. В течение скольких минут масса изотопа будет не меньше 39 мг?

Ответ: 16
 
Аналоги к этому заданию:

Задание 10149

Масса радиоактивного вещества уменьшается по закону $$m(t)=m_{0}\cdot 2^{-\frac{t}{T}}$$ , где m – начальная масса, а T – период полураспада. В лаборатории получили вещество, содержащее m0 =12 мг изотопа меди‐64, период полураспада которого часов. Через сколько часов количество меди‐64 уменьшится до 3 мг?

Ответ: 25,6
 
Аналоги к этому заданию:

Задание 8677

Два сосуда, заполненные воздухом при давлениях p1=0.8 МПа и p2=0.6 МПа, соединяют тонкой трубкой, объемом которой можно пренебречь по сравнению с объемом сосудов. Установившееся давление p=0.65 МПа. В соответствии с законом Бойля‐Мариотта и законом Дальтона при постоянной температуре справедливо следующее соотношение $$p(V_{1}+V_{2})=p_{1}V_{1}+p_{2}V_{2}$$ , где V1 и V2 ‐ объемы первого и второго сосудов соответственно. Во сколько раз объем второго сосуда больше объема первого сосуда?

Ответ: 3
Аналоги к этому заданию:

Задание 5824

Среднее гар­мо­ни­че­ское трёх чисел a,b и c вы­чис­ля­ет­ся по фор­му­ле $$h=(\frac{a^{-1}+b^{-1}+c^{-1}}{3})^{-1}$$. Най­ди­те сред­нее гар­мо­ни­че­ское чисел $$\frac{1}{3}; \frac{1}{4}$$ и $$\frac{1}{8}$$.

Ответ:
Аналоги к этому заданию:

Задание 4466

Уста­нов­ка для де­мон­стра­ции адиа­ба­ти­че­ско­го сжа­тия пред­став­ля­ет собой сосуд с порш­нем, резко сжи­ма­ю­щим газ. При этом объeм и дав­ле­ние свя­за­ны со­от­но­ше­ни­ем $$pV^{1,4}=const$$, где $$p$$ (атм.) – дав­ле­ние в газе, $$V$$ – объeм газа в лит­рах. Из­на­чаль­но объeм газа равен 1,6 л, а его дав­ле­ние равно одной ат­мо­сфе­ре. В со­от­вет­ствии с тех­ни­че­ски­ми ха­рак­те­ри­сти­ка­ми пор­шень на­со­са вы­дер­жи­ва­ет дав­ле­ние не более 128 ат­мо­сфер. Опре­де­ли­те, до ка­ко­го ми­ни­маль­но­го объeма можно сжать газ. Ответ вы­ра­зи­те в лит­рах.

Ответ: 0,05
Аналоги к этому заданию:

Задание 4465

Урав­не­ние про­цес­са, в ко­то­ром участ­во­вал газ, за­пи­сы­ва­ет­ся в виде $$pV^{a}=const$$, где $$P$$ (Па) – дав­ле­ние в газе, $$V$$ – объeм газа в ку­би­че­ских мет­рах, a – по­ло­жи­тель­ная кон­стан­та. При каком наи­мень­шем зна­че­нии кон­стан­ты a умень­ше­ние вдвое раз объeма газа, участ­ву­ю­ще­го в этом про­цес­се, при­во­дит к уве­ли­че­нию дав­ле­ния не менее, чем в 4 раза?

Ответ: 2
Аналоги к этому заданию:

Задание 4464

В ходе рас­па­да ра­дио­ак­тив­но­го изо­то­па его масса умень­ша­ет­ся по за­ко­ну $$m(t)=m_{0}\cdot2^{-\frac{t}{T}}$$, где $$m_{0}$$ – на­чаль­ная масса изо­то­па, $$t$$ – время, про­шед­шее от на­чаль­но­го мо­мен­та, $$T$$ – пе­ри­од по­лу­рас­па­да. В на­чаль­ный мо­мент вре­ме­ни масса изо­то­па 40 мг. Пе­ри­од его по­лу­рас­па­да со­став­ля­ет 10 мин. Най­ди­те, через сколь­ко минут масса изо­то­па будет равна 5 мг.

Ответ: 30
Аналоги к этому заданию:

Задание 4463

При адиа­ба­ти­че­ском про­цес­се для иде­аль­но­го газа вы­пол­ня­ет­ся закон $$pV^{k}=10^{5}$$ Па м5, где $$p$$ – дав­ле­ние в газе в пас­ка­лях, $$V$$ – объeм газа в ку­би­че­ских мет­рах, $$k=\frac{3}{5}$$. Най­ди­те, какой объём $$V$$ (в куб. м) будет за­ни­мать газ при дав­ле­нии $$p$$, рав­ном $$3,2\cdot10^{6}$$ Па.

Ответ: 0,125