Перейти к основному содержанию

ЕГЭ Профиль

Планиметрия: задачи, связанные с углами

Описанные окружности

 
Аналоги к этому заданию:

Задание 9520

Основания равнобедренной трапеции равны 24 и 10. Радиус описанной окружности равен 13. Центр окружности лежит внутри трапеции. Найдите высоту трапеции.

Ответ: 17
 
Аналоги к этому заданию:

Задание 9152

Четырёхугольник ABCD вписан в окружность. Угол ABC равен 122°, угол ABD равен 36°. Найдите угол CAD. Ответ дайте в градусах.

Ответ:
 
Аналоги к этому заданию:

Задание 9036

Основания равнобедренной трапеции равны 6 и 8, а радиус описанной вокруг неё окружности равен 5. Центр окружности лежит вне трапеции. Найдите высоту трапеции.

Ответ: 1
 
Аналоги к этому заданию:

Задание 8864

Около окружности описана равнобедренная трапеция с боковой стороной равной 25. Найдите длину средней линии этой трапеции.

Ответ: 25
 
Аналоги к этому заданию:

Задание 8752

Два угла вписанного в окружность четырёхугольника равны 112° и 125°. Найдите больший из оставшихся углов. Ответ дайте в градусах

Ответ: 68

 
Аналоги к этому заданию:

Задание 7935

Четырехугольник ABCD вписан в окружность. Угол АВС равен 1400, угол CAD равен 840. Найдите угол ABD. Ответ дайте в градусах.

Ответ: 56
Аналоги к этому заданию:

Задание 3596

Угол между сто­ро­ной пра­виль­но­го  -уголь­ни­ка, впи­сан­но­го в окруж­ность, и ра­ди­у­сом этой окруж­но­сти, про­ве­ден­ным в одну из вер­шин сто­ро­ны, равен 54°. Най­ди­те n.

Ответ: 5
Аналоги к этому заданию:

Задание 3595

Пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка равен 72. Най­ди­те диа­метр опи­сан­ной окруж­но­сти.

Ответ: 24
Аналоги к этому заданию:

Задание 3594

Два угла впи­сан­но­го в окруж­ность че­ты­рех­уголь­ни­ка равны 82° и 58°. Най­ди­те боль­ший из остав­ших­ся углов. Ответ дайте в гра­ду­сах.

Ответ: 122
Аналоги к этому заданию:

Задание 3593

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 8 и 6. Ра­ди­ус опи­сан­ной окруж­но­сти равен 5. Най­ди­те вы­со­ту тра­пе­ции.

Ответ: 7
Аналоги к этому заданию:

Задание 3592

Бо­ко­вая сто­ро­на рав­но­бед­рен­ной тра­пе­ции равна ее мень­ше­му ос­но­ва­нию, угол при ос­но­ва­нии равен 60°, боль­шее ос­но­ва­ние равно 12. Най­ди­те ра­ди­ус опи­сан­ной окруж­но­сти этой тра­пе­ции.

Ответ: 6
Аналоги к этому заданию:

Задание 3591

Около тра­пе­ции опи­са­на окруж­ность. Пе­ри­метр тра­пе­ции равен 22, сред­няя линия равна 5. Най­ди­те бо­ко­вую сто­ро­ну тра­пе­ции.

Ответ: 6
Аналоги к этому заданию:

Задание 3590

Бо­ко­вые сто­ро­ны рав­но­бед­рен­но­го тре­уголь­ни­ка равны 40, ос­но­ва­ние равно 48. Най­ди­те ра­ди­ус опи­сан­ной окруж­но­сти этого тре­уголь­ни­ка.

Ответ: 25
Аналоги к этому заданию:

Задание 3589

Сто­ро­на AB тре­уголь­ни­ка ABC равна 1. Про­ти­во­ле­жа­щий ей угол C равен 150°. Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около этого тре­уголь­ни­ка.

Ответ: 1
Аналоги к этому заданию:

Задание 3588

Угол C тре­уголь­ни­ка ABC, впи­сан­но­го в окруж­ность ра­ди­у­са 3, равен 30°. Най­ди­те сто­ро­ну AB этого тре­уголь­ни­ка.

Ответ: 3
Аналоги к этому заданию:

Задание 3587

Одна сто­ро­на тре­уголь­ни­ка равна ра­ди­у­су опи­сан­ной окруж­но­сти. Най­ди­те угол тре­уголь­ни­ка, про­ти­во­ле­жа­щий этой сто­ро­не. Ответ дайте в гра­ду­сах

Ответ: 30
Аналоги к этому заданию:

Задание 3586

Сто­ро­на AB тре­уголь­ни­ка ABC равна 1. Про­ти­во­ле­жа­щий ей угол C равен 30°. Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около этого тре­уголь­ни­ка.

Ответ: 1
Аналоги к этому заданию:

Задание 3585

Чему равна сто­ро­на пра­виль­но­го ше­сти­уголь­ни­ка, впи­сан­но­го в окруж­ность, ра­ди­ус ко­то­рой равен 6?

Ответ: 6
Аналоги к этому заданию:

Задание 3583

В тре­уголь­ни­ке ABC AC = 4, BC = 3, угол C равен 90°. Най­ди­те ра­ди­ус опи­сан­ной окруж­но­сти этого тре­уголь­ни­ка.

Ответ: 2,5
Аналоги к этому заданию:

Задание 3582

Ра­ди­ус окруж­но­сти, опи­сан­ной около пря­мо­уголь­но­го тре­уголь­ни­ка, равен 4. Най­ди­те ги­по­те­ну­зу этого тре­уголь­ни­ка.

Ответ: 8
Аналоги к этому заданию:

Задание 3581

Ги­по­те­ну­за пря­мо­уголь­но­го тре­уголь­ни­ка равна 12. Най­ди­те ра­ди­ус опи­сан­ной окруж­но­сти этого тре­уголь­ни­ка.

Ответ: 6
Аналоги к этому заданию:

Задание 3580

Ра­ди­ус окруж­но­сти, опи­сан­ной около пра­виль­но­го тре­уголь­ни­ка, равен 3. Най­ди­те вы­со­ту этого тре­уголь­ни­ка.

Ответ: 4,5
Аналоги к этому заданию:

Задание 3579

Вы­со­та пра­виль­но­го тре­уголь­ни­ка равна 3. Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около этого тре­уголь­ни­ка.

Ответ: 10
Аналоги к этому заданию:

Задание 3578

Ра­ди­ус окруж­но­сти, опи­сан­ной около пра­виль­но­го тре­уголь­ни­ка, равен $$\sqrt{3}$$. Най­ди­те сто­ро­ну этого тре­уголь­ни­ка.

Ответ: 3
Аналоги к этому заданию:

Задание 3577

Сто­ро­на пра­виль­но­го тре­уголь­ни­ка равна $$\sqrt{3}$$. Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около этого тре­уголь­ни­ка.

Ответ: 1
Аналоги к этому заданию:

Задание 3576

Че­ты­рех­уголь­ник ABCD впи­сан в окруж­ность. Угол ABC равен 110°, угол ABD равен 70°. Най­ди­те угол CAD. Ответ дайте в гра­ду­сах.

Ответ: 40
Аналоги к этому заданию:

Задание 3575

Че­ты­рех­уголь­ник ABCD впи­сан в окруж­ность. Угол ABD равен 75°, угол CAD равен 35°. Най­ди­те угол ABC. Ответ дайте в гра­ду­сах.

Ответ: 110
Аналоги к этому заданию:

Задание 3573

Точки ABCD, рас­по­ло­жен­ные на окруж­но­сти, делят эту окруж­ность на че­ты­ре дуги ABBCCD и AD, гра­дус­ные ве­ли­чи­ны ко­то­рых от­но­сят­ся со­от­вет­ствен­но как 4 : 2 : 3 : 6. Най­ди­те угол A че­ты­рех­уголь­ни­ка ABCD. Ответ дайте в гра­ду­сах.

Ответ: 60
Аналоги к этому заданию:

Задание 3572

Сто­ро­ны че­ты­рех­уголь­ни­ка ABCD AB, BC, CD и AD стя­ги­ва­ют дуги опи­сан­ной окруж­но­сти, гра­дус­ные ве­ли­чи­ны ко­то­рых равны со­от­вет­ствен­но $$95^{\circ}$$, $$49^{\circ}$$, $$71^{\circ}$$, $$145^{\circ}$$. Най­ди­те угол B этого че­ты­рех­уголь­ни­ка. Ответ дайте в гра­ду­сах.

Ответ: 108
Аналоги к этому заданию:

Задание 3571

Угол A че­ты­рех­уголь­ни­ка ABCD, впи­сан­но­го в окруж­ность, равен 58°. Най­ди­те угол C этого че­ты­рех­уголь­ни­ка. Ответ дайте в гра­ду­сах.

Ответ: 122
Аналоги к этому заданию:

Задание 3570

Точки ABC, рас­по­ло­жен­ные на окруж­но­сти, делят ее на три дуги, гра­дус­ные ве­ли­чи­ны ко­то­рых от­но­сят­ся как 1 : 3 : 5. Най­ди­те боль­ший угол тре­уголь­ни­ка ABC. Ответ дайте в гра­ду­сах.

Ответ: 100
Аналоги к этому заданию:

Задание 1923

Че­ты­рех­уголь­ник ABCD впи­сан в окруж­ность. Угол ABC равен 70°, угол CAD равен 49°. Най­ди­те угол ABD. Ответ дайте в гра­ду­сах.

Ответ: 21
Скрыть

   1) $$\angle ABC=\frac{1}{2}\smile AC$$ (по свойству вписанного угла), тогда $$\smile AC=140^{\circ}$$

   2) $$\angle CAD=\frac{1}{2}\smile DC$$ (по свойству вписанного угла), тогда $$\smile DC=98^{\circ}$$

   3) $$\smile AD=140-98=42^{\circ}$$, тогда $$\angle ABD=\frac{1}{2}\smile AD=21^{\circ}$$ (по свойству вписанного угла)

Аналоги к этому заданию:

Задание 1922

Окруж­ность с цен­тром в точке O опи­са­на около рав­но­бед­рен­но­го тре­уголь­ни­ка ABC, в ко­то­ром AB = BC и ∠ABC = 177°. Най­ди­те ве­ли­чи­ну угла BOC. Ответ дайте в гра­ду­сах.

Ответ: 3
Скрыть

   1) Треугольник ABC - равнобедренный, $$\angle BAC=\angle BCA=\frac{180-177}{2}=1,5$$.

   2) $$\angle BAC=\frac{1}{2}BC$$ (по свойству вписанного угла), тогда $$\smile BC=2*1,5=3^{\circ}$$

   3) $$\angle BOC=\smile BC=3^{\circ}$$ (по свойству центрального угла)

Аналоги к этому заданию:

Задание 1921

Бо­ко­вая сто­ро­на рав­но­бед­рен­но­го тре­уголь­ни­ка равна 4. Угол при вер­ши­не, про­ти­во­ле­жа­щий ос­но­ва­нию, равен 120°. Най­ди­те диа­метр окруж­но­сти, опи­сан­ной около этого тре­уголь­ни­ка.

Ответ: 8
Скрыть

  1) $$\angle ABC=\frac{1}{2}\smile AC$$ (по свойству вписанного угла), тогда $$\smile AC=2*120=240^{\circ}$$ (большая дуга)

  2) Вся окружность равна $$360^{\circ}$$, тогда меньшая дуга AC составляет $$120^{\circ}$$

  3) $$\angle AOC=\smile AC=120^{\circ}$$ (меньшей дуге, по свойству центрального угла), тогда треугольники ABC и AOC равны (оба равнобедренных, общая сторона), следовательно OC=4, и диаметр составляет 4*2=8

Аналоги к этому заданию:

Задание 1919

В окруж­ность впи­сан рав­но­сто­рон­ний вось­ми­уголь­ник. Най­ди­те ве­ли­чи­ну угла ABH.

Ответ: 22,5
Скрыть

  1) Для нахождения угла правильного n-угольника, можно воспользоваться формулой: $$\alpha=\frac{n-2}{n}*180$$

  2) $$\angle ABC = \frac{8-2}{8}*180=135^{\circ}$$

  3) Из треугольника HOA: $$\angle HOA=180-2\angle OHA=180-\angle H=45^{\circ}$$ (треугольник равнобедренный, OH - биссектрисса угла H)

  4) Меньшая дуга $$HA=\angle HOA=45^{\circ}$$ (по свойству центрального угла)

  5) $$\angle ABH=\frac{1}{2}\smile HA=22,5^{\circ}$$ (по свойству вписанного угла)