ЕГЭ 2020. Вариант 10. Ященко 36 вариантов ФИПИ школе.
ЕГЭ 2020, полный разбор 10 варианта Ященко ФИПИ школе 36 вариантов. Решаем типовые варианты от Ященко 2020 года ЕГЭ профиль!
Больше разборов на моем ютуб-канале
Решаем 10 вариант Ященко 2020 года сборника ФИПИ школе 36 вариантов. Разбор 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 задания.
Задание 2
На рисунке показан курс индийской рупии, установленный Центробанком на все рабочие дни марта 2019 года. По горизонтали указаны числа месяца, по вертикали — цена 100 индийских рупий в рублях. Для наглядности точки соединены отрезками.
Определите, сколько рабочих дней в период с 16 по 30 марта 2019 года стоимость 100 индийских рупий была ниже 94 рублей.
Задание 10
Два тела, массой m=10 кг каждое, движутся с одинаковой скоростью v=10 м/с под углом $$2\alpha$$ друг к другу. Энергия (в джоулях), выделяющаяся при их абсолютно неупругом соударении, вычисляется по формуле $$Q=mv^{2}\sin^{2}\alpha$$, где m-масса в килограммах, v-скорость в м/с. Найдите, под каким наименьшим углом $$2\alpha$$ (в градусах) должны двигаться тела, чтобы в результате соударения выделилось энергии не менее 750 джоулей.
Задание 11
Две бригады, состоящие из рабочих одинаковой квалификации, одновременно начали выполнять два одинаковых заказа. В первой бригаде было 6 рабочих, во второй 15 рабочих. Через 5 дней после начала работы в первую бригаду перешли 7 рабочих из второй бригады. В итоге оба заказа были выполнены одновременно. Найдите, сколько дней потребовалось на выполнение заказов.
Задание 14
Основание пирамиды SABC-равносторонний треугольник ABC. Боковое ребро SA перпендикулярно плоскости основания, точки М и N — середины рёбер BC и AB соответственно, причём SN=AM.
а) Докажите, что угол между прямыми AM и SN равен 60°.
б) Найдите расстояние между этими прямыми, если BC=6.
Задание 16
В треугольнике АВС все стороны различны. Прямая, содержащая высоту ВН треугольника АВС, вторично пересекает описанную около этого треугольника окружность в точке K. Отрезок BN-диаметр этой окружности.
а) Докажите, что AC и KN параллельны.
б) Найдите расстояние от точки N до прямой AC, если радиус описанной около треугольника ABC окружности равен $$6\sqrt{6}$$, $$\angle BAC$$=30°, $$\angle ABC$$=105°.
Задание 17
По бизнес-плану четырёхлетний проект предполагает начальное вложение — 10 млн рублей. По итогам каждого года планируется прирост вложенных средств на 12 % по сравнению с началом года. Начисленные проценты остаются вложенными в проект. Кроме этого, сразу после начислений процентов нужны дополнительные вложения: целое число n млн рублей и в первый, и во второй годы, а также целое число m млн рублей и в третий, и в четвёртый годы. Найдите наименьшее значение n, при котором первоначальные вложения за два года вырастут как минимум в полтора раза, и наименьшее значение m, такое, что при найденном ранее значении n первоначальные вложения за четыре года как минимум утроятся.
Задание 19
Издательство на выставку привезло несколько книг для продажи (каждую книгу привезли в единственном экземпляре). Цена каждой книги — натуральное число рублей. Если цена книги меньше 75 рублей, на неё приклеивают бирку «выгодно». Однако до открытия выставки цену каждой книги увеличили на 15 рублей, из-за чего количество книг с бирками «выгодно» уменьшилось.
а) Могла ли уменьшиться средняя цена книг с биркой «выгодно» после открытия выставки по сравнению со средней ценой книг с биркой «выгодно» до открытия выставки?
б) Могла ли уменьшиться средняя цена книг без бирки «выгодно» после открытия выставки по сравнению со средней ценой книг без бирки «выгодно» до открытия выставки?
в) Известно, что первоначально средняя цена всех книг составляла 80 рубля, средняя цена книг с биркой «выгодно» составляла 56 рублей, а средняя цена книг без бирки — 152 рублей. После увеличения цены средняя цена книг с биркой «выгодно» составила 70 рублей, а средняя цена книг без бирки — 145 рублей. При каком наименьшем количестве книг такое возможно?
Задание 20
Для приготовления маринада для огурцов на 1 литр воды требуется 15 г лимонной кислоты. Лимонная кислота продаётся в пакетиках по 10 г. Анна Петровна собирается законсервировать четыре 3-литровые банки огурцов. В 3-литровых банках огурцы обычно занимают 60% объёма, остальное - маринад. Какое наименьшее число пакетиков лимонной кислоты нужно купить Анне Петровне?
Задание 22
В магазине в одной коробке лежат вперемешку ручки с чёрными, синими или красными чернилами одинаковые на вид. Покупатель случайным образом выбирает одну ручку. Вероятность того, что она окажется чёрной, равна 0,37, а того, что она окажется синей, равна 0,45. Найдите вероятность того, что ручка окажется красной.
Задание 25
Материальная точка движется прямолинейно по закону $$x\left(t\right)=\frac{1}{2}t^3-2t^2+6t+25$$, где х - расстояние от точки отсчёта в метрах, t - время в секундах, прошедшее с момента начала движения. Найдите её скорость (в метрах в секунду) в момент времени $$t\ =\ 4.$$
Задание 28
Водолазный колокол, содержащий $$v\ =\ 2$$ моль воздуха при давлении $$p_1\ =\ 2,4$$ атмосферы, медленно опускают на дно водоёма. При этом происходит изотермическое сжатие воздуха до конечного давления $$p_2$$ в атмосферах. Работа, совершаемая водой при сжатии воздуха, вычисляется по формуле $$A\ =\ avT{log}_2\frac{p_2}{p_1}$$,где $$\alpha =13,5$$ Дж/моль$$\cdot $$К постоянная, $$T\ =\ 300$$ К - температура воздуха. Найдите, какое давление $$p_2$$ будет иметь воздух в колоколе, если при сжатии воздуха была совершена работа в 16 200 Дж. Ответ дайте в атмосферах.
Задание 29
Первая труба заполняет резервуар объёмом 440 литров на 4 минуты медленнее, чем вторая труба заполняет резервуар объёмом 396 литров. Первая труба пропускает на 2 литра воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает вторая труба?
Задание 31
а) Решите уравнение $$cos2xsin2xsin\frac{2\pi }{3}=\frac{1}{4}{\rm cos}?(8x-\frac{3\pi }{2})$$
б) Укажите корни этого уравнения, принадлежащие отрезку $$[\frac{8\pi }{3};;\ \frac{10\pi }{3}]$$
Задание 32
Радиус основания конуса равен 12, а высота конуса равна 5.
а) Постройте сечение конуса плоскостью, проходящей через вершину конуса и взаимно перпендикулярные образующие.
б) Найдите расстояние от плоскости сечения до центра основания конуса.
Задание 34
На сторонах АС, АВ и ВС прямоугольного треугольника АВС с прямым углом С во внешнюю сторону построены равнобедренные прямоугольные треугольники АКС, ALB и ВМС с прямыми углами К, L и М соответственно.
а) Докажите, что LC - высота треугольника KLM.
б) Найдите площадь треугольника KLM, если$$\ LC\ =10.$$
Задание 35
Бригаду из 30 рабочих нужно распределить по двум объектам. Если на первом объекте работает р человек, то каждый из них получает в сутки 200р руб. Если на втором объекте работает р человек, то каждый из них получает в сутки $$(50p\ +\ 300)$$ руб. Как нужно распределить рабочих по объектам, чтобы их суммарная суточная зарплата оказалась наименьшей? Сколько рублей в этом случае придётся заплатить за сутки всем рабочим?
Задание 37
Для набора 40 различных натуральных чисел выполнено, что сумма любых двух чисел из этого набора меньше суммы любых четырёх чисел из этого набора.
а) Может ли одним из этих чисел быть число 777?
б) Может ли одним из этих чисел быть число 33?
в) Какое наименьшее значение может принимать сумма чисел этого набора?