Перейти к основному содержанию

ОГЭ

(C6) Геометрическая задача повышенной сложности

Четырёхугольники

Задание 5611

В трапеции проведен отрезок, параллельный основаниям и делящий ее на две трапеции одинаковой площади. Найдите длину этого отрезка, если основания трапеции равны $$24\sqrt{2}$$ см и $$7\sqrt{2}$$ см.

Ответ:

Задание 5612

В равнобедренную трапецию, периметр которой равен 120, а площадь равна 540, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.

Ответ:

Задание 6120

На диагонали BD прямоугольной трапеции ABCD с прямым углом ADС и основаниями ВС и АD, взята точка К так, что ВК : КD = 1 : 3. Окружность с центром в точке К касается прямой АD и пересекает прямую ВС в точках Р и М. Найдите длину стороны АВ, если ВС = 9, АD = 8, РМ = 4.

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

  1. Пусть Е - точка касания, проведем перпендикуляр через E и K (свойство радиуса в точку касания). Пусть EK пересекает CB в точке F
  2. Так как $$EF\perp PM$$, то $$FP=FM$$ (из равенства треугольников KFP и KFM). Так же $$KE=KP=K=R$$ (радиусы)
  3. Треугольники KED и KFB подобный (так как дана трапеция), тогда $$\frac{KF}{KE}=\frac{KB}{KD}=\frac{1}{3}$$, тогда $$KF=\frac{1}{3}KE=\frac{R}{3}$$
  4. из треугольника PKF: $$KP^{2}=PF^{2}+KF^{2}$$ или $$R^{2}=\frac{1}{9}R^{2}+4$$. Отсюда $$R=\frac{3}{\sqrt{2}}$$
  5. Опустим $$AH\perp BC$$ (AH пересекает BC в точке H). Тогда $$AH=EK+KF=\frac{4}{3}R=2\sqrt{2}$$, $$HB=BC-AD=1$$
  6. Из треугольника AHB: $$AB=\sqrt{1^{2}+(2\sqrt{2})^{2}}=3$$

Задание 6215

Внутри параллелограмма ABCD взята точка K так, что треугольник CKD равносторонний. Известно, что расстояния от точки K до прямых AD, AB и BC равны соответственно 3, 6 и 5. Найдите периметр параллелограмма.

Ответ: $$\frac{49\sqrt{3}}{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

   1) Пусть KN=3, KP=5, KM=6,$$KQ\perp DC$$

KD=KC=DC=Q, тогда:

$$\Delta KDC ND=\sqrt{a^{2}-3^{2}}$$

$$\Delta KPC PC=\sqrt{a^{2}-5^{2}}$$

   2) Опустим $$DH\perp BC$$, тогда DH=NP=8,

$$CH=ND-PC=\sqrt{a^{2}-3^{2}}-\sqrt{a^{2}-5^{2}}$$

Тогда из $$\Delta DHC:$$

$$a^{2}=8^{2}+(\sqrt{a^{2}-3^{2}}-\sqrt{a^{2}-5^{2}})^{2}$$

$$a^{2}-8^{2}=a^{2}-9+a^{2}-25-2\sqrt{a^{4}-34a^{2}+225}$$

$$2\sqrt{a^{4}-34a^{2}+225}=a^{2}+30$$

$$4a^{4}-136a^{2}+900=a^{4}+60a^{2}+900$$

$$3a^{4}-196a^{2}=0$$

$$3a^{2}(a^{2}-\frac{96}{3})=0$$

a=0-не может быть

$$a=\pm \sqrt{\frac{196}{3}}=\pm \frac{14}{\sqrt{3}}$$ отрицательным не может быть

   3) Из $$\Delta KDC KQ=KC*\sin C=\frac{14}{\sqrt{3}}*\frac{\sqrt{3}}{2}=7\Rightarrow MQ=13$$

   4) $$S_{ABCD}=MP*BC=MQ*DC$$

$$BC=\frac{MQ*DC}{NP}=\frac{13*14}{\sqrt{3}}{8}=\frac{91}{4\sqrt{3}}$$

   5) $$P_{ABCD}=2(\frac{14}{\sqrt{3}}+\frac{91}{4\sqrt{3}})=\frac{147}{2\sqrt{3}}=\frac{49\sqrt{3}}{2}$$

Задание 6263

В равнобедренной трапеции АВСD углы при основании АD равны 30, диагональ АС является биссектрисой угла ВАD. Биссектриса угла ВСD пересекает основание АD в точке М, а отрезок ВМ пересекает диагональ АС в точке К. Найдите площадь треугольника АКМ, если площадь трапеции АВСD равна $$2+\sqrt{3}$$ см2 .

Ответ: $$\frac{3}{\sqrt{3}+1}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть $$AB=CD=a$$, $$\angle BAC=\angle CAD$$(AC-биссектриса ), $$\angle CAD=\angle ACB$$(накрест лежащие),тогда $$\angle BAC=\angle BCA\Rightarrow$$ $$AB=BC=a$$

     2) Аналогично для $$\Delta CMD$$ : $$\angle BCM=\angle CMD$$, $$\angle BCM=\angle MCD$$, тогда $$\angle CMD=\angle MCD$$ и $$CD=MD=a$$

     3) из п.2 и параллельности BC и MD получим, что BCDM-параллелограмм; $$BM=CD=a$$, $$\Delta A_{1}BM$$ -равнобедренный; $$\angle ABM=180-2*30=120$$

По теореме косинусов : $$AM=\sqrt{AB^{2}+BM^{2}-2AB*BM*\cos ABM}=$$$$\sqrt{a^{2}+a^{2}-2*a*a*\cos 120}=a\sqrt{3}$$

     4) AK-биссектриса , тогда $$\frac{AB}{AM}=\frac{AK}{KM}=$$$$\frac{a}{\sqrt{30}}=\frac{1}{\sqrt{3}}$$, тогда $$\frac{KM}{BM}=\frac{\sqrt{3}}{\sqrt{3}+1}$$ и $$S_{\Delta AKM}=\frac{\sqrt{3}}{\sqrt{3}+1}S_{ABM}$$

     5) Пусть $$CN\perp AD$$,тогда из $$\Delta CND$$: $$CH=CD*\sin D=\frac{a}{2}$$

     6) $$S_{ABD}=\frac{a+a+a\sqrt{3}}{2}*\frac{a}{2}=$$$$\frac{a^{2}}{4}(2+\sqrt{3})=2+\sqrt{3}\Rightarrow$$ $$a^{2}=4\Rightarrow a=2$$

     7)$$S_{ABM}=\frac{1}{2}*a*a* \sin 120=$$$$\frac{\sqrt{3}a^{2}}{4}=\sqrt{3}$$

$$S_{AKM}=\frac{\sqrt{3}}{\sqrt{3}+1}*\sqrt{3}=$$$$\frac{3}{\sqrt{3}+1}$$

Задание 6311

В равнобедренной трапеции ABCD длина боковой стороны АВ равна 2 и длина меньшего основания ВС равна 2. Найдите площадь трапеции, если $$BD\perp AB$$.

Ответ: $$3\sqrt{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть $$\angle DBC=\alpha$$ , тогда т.к. BC=CD, $$\angle BCD=\alpha$$, $$\angle C=180-2\alpha$$

     2) По свойству углов трапеции $$\angle C+\angle D=180\Rightarrow$$ $$\angle D=180-(180-2\alpha )=2\alpha$$ $$\Rightarrow \angle BDA=\alpha$$

      3) Пусть BD=y. Тогда из $$\Delta BCD$$:

$$CD^{2}=BC^{2}+AD^{2}-2BC*AD*\cos CBD$$

$$2^{2}=2^{2}+y^{2}-2*2*y*\cos \alpha \Leftrightarrow$$ $$y^{2}-4y*\cos \alpha =0$$

$$y(y-4\cos\alpha )=0$$, т.к. y-длина, то $$y\neq 0$$, тогда $$y-4\cos \alpha =0\Rightarrow y=4\cos\alpha$$

     4) Из $$\Delta ABD$$:

$$\frac{AB}{BD}=tgBDA\Rightarrow$$ $$\frac{2}{4\cos\alpha }=tg\alpha =\frac{\sin\alpha }{\cos\alpha }\Leftrightarrow$$ $$\sin\alpha =\frac{1}{2}\Rightarrow$$ $$\alpha =30\Rightarrow$$ $$y=4*\frac{\sqrt{3}}{2}=2\sqrt{3}$$

     5) $$S_{ABCD}=S_{BCD}+S_{ABD}=$$$$\frac{1}{2}*BC*BD*\sin CBD+\frac{1}{2}*AB*BD=$$$$\frac{1}{2}*2*2\sqrt{3}*\frac{1}{2}+\frac{1}{2}*2*2\sqrt{3}=$$$$\sqrt{3}+2\sqrt{3}=3\sqrt{3}$$

Задание 6358

В выпуклом четырехугольнике KLMN отрезок MS, соединяющий вершину М с точкой S, расположенной на стороне КN, пересекает диагональ LN в точке О. Известно, что KL : MN = 6 : 7, KM : ON = 2 : 1 и $$\angle KLN + \angle KMN=180$$. Найдите отношение отрезков MO и OS.

Ответ: $$\frac{4}{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть $$KM\cap LN=P$$, $$\angle KLN=\alpha$$ , тогда $$\angle KMN=180-\alpha$$ ,$$\angle LPK=\angle MPN=\beta$$ (вертикальные)

     2) из $$\Delta LPK$$ по теореме синусов: $$\frac{KP}{\sin \alpha }=\frac{LK}{\sin \beta }(1)$$

Из $$\Delta PMN : \frac{PN}{\sin (180-\alpha )}=\frac{MN}{\sin \beta }$$

С учетом , что $$\sin \alpha =\sin (180-\alpha )$$, получаем: $$\frac{PN}{\sin \alpha }=\frac{MN}{\sin \beta }(2)$$

Поделим (1) и (2): $$\frac{KP}{PN}=\frac{LK}{MN}=\frac{6}{7}$$

     3) Пусть KM=2y; ON=y, тогда KP=6x, PN=7x, PM=2y-6x, PO=7x-y; 

     4)По т. Менелая из $$\Delta KPN$$ и секущей MS : $$\frac{MO}{OS}*\frac{SN}{NK}*\frac{KP}{PM}=1$$

Пусть $$\frac{SO}{OS}=m$$, тогда $$m*\frac{SN}{SN+SK}*\frac{6x}{2y-6x}=1(3)$$

По т. Менелая из $$\Delta KMS$$ и секущей NP: $$\frac{NO}{OP}*\frac{PM}{MK}*\frac{MS}{SN}=1$$

Пусть $$\frac{SK}{SN}=n$$, тогда $$\frac{SN}{SN+SK}=\frac{\frac{SN}{SN}}{\frac{SN}{SN}+\frac{SK}{SN}}=\frac{1}{1+n}$$

Получаем: $$\frac{y}{7x-y}*\frac{2y-6x}{2y}*n=1(4)$$

Выразим в (3) m: $$m=\frac{2y-6x}{6x}*(1+n)=\frac{(y-3x)(1+n)}{3x}(5)$$

Выразим в (4) n: $$n=\frac{y}{y-3x}*\frac{7x-y}{y}=\frac{7x-y}{y-3x}$$

Выразим в (5): $$m=\frac{(y-3x)(1+\frac{7x-y}{y-3x})}{3x}=$$$$\frac{y-3x+7x-y}{3x}=\frac{4x}{3x}=\frac{4}{3}$$

Задание 6452

На диагонали BD прямоугольной трапеции ABCD ($$\angle D=90^{\circ}$$, ВС ॥ AD) взята точка Q так, что BQ : QD = 1 : 3. Окружность с центром в точке Q касается прямой AD и пересекает прямую ВС в точках Р и К. Найдите длину стороны АВ, если ВС = 9, AD = 8, РК = 4

Ответ: 3
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть F точка касания и $$CD=x$$. Опустим перпендикуляры FH(через Q) и $$AC_{1}$$. Тогда $$CD=FH=AC_{1}=x$$

     2) $$\Delta QHB\sim \Delta DCB$$: $$\frac{CD}{QH}=\frac{BD}{BQ}\Rightarrow$$ $$QH=\frac{1}{4}EB=\frac{1}{4}x\Rightarrow$$$$FQ=x-\frac{1}{4}x=\frac{3}{4}x$$. Но QP=QF (радиус)

     3) из $$\Delta QHP:$$ $$PH=\frac{1}{2}PK=2$$. Тогда по т. Пифагора : $$PQ^{2}=QH^{2}+PH^{2}\Leftrightarrow$$ $$(\frac{3}{4}x)^{2}=(\frac{1}{4}x)^{2}+2^{2}\Leftrightarrow$$ $$\frac{x^{2}}{2}=4\Rightarrow$$ $$x^{2}=8$$

     4)из $$\Delta AC_{1}B$$ : $$AB=\sqrt{AC_{1}^{2}+C_{1}B^{2}}$$.  $$C_{1}B=CB-AD=9-8=1$$, $$AC_{1}^{2}=x^{2}=8$$, тогда $$AB=\sqrt{8+1}=3$$

Задание 6507

В выпуклом четырехугольнике ABCD отрезок СМ, соединяющий вершину С с точкой М, расположенной на стороне AD, пересекает диагональ BD в точке К. Известно, что СК : КМ = 2 : 1, CD : DК = 5 : 3 и $$\angle ABD+\angle ACD=180^{\circ}$$. Найдите отношение стороны АВ и диагонали АС.

Ответ: $$\frac{5}{9}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть $$\angle ADB =\alpha$$ , $$\angle ADC=\beta$$

по т. Синусов : $$\Delta ABD$$: $$\frac{AB}{\sin \alpha }=\frac{AD}{\sin \angle ABD}(1)$$

$$\sin \angle BAD=$$$$\sin(180-\angle ACD)=$$$$\sin \angle ACD(2)$$

$$\Delta ACD$$ : $$\frac{AD}{\sin \angle ACD}=$$$$\frac{AC}{\sin \beta }(3)$$

Учитывая (1) и (2) и (3) : $$\frac{AB}{\sin \alpha }=\frac{AC}{\sin \beta }\Leftrightarrow$$ $$\frac{AB}{AC}=\frac{\sin\alpha }{\sin \beta }$$

     2) Пусть MK=x $$\Rightarrow$$ CK=2x CM=3x, CD=5y $$\Rightarrow$$ DK=3y, $$\angle CMD=\delta$$

Из $$\Delta MDK$$ : $$\frac{x}{\sin \alpha }=\frac{3y}{\sin \delta }\Rightarrow$$ $$\sin \alpha =\frac{x\sin \delta }{3y}$$

Из $$\Delta MDC$$ : $$\frac{3x}{\sin \beta }=\frac{5y}{\sin \delta }\Rightarrow$$ $$\sin \beta =\frac{3x \sin \delta }{5y}$$

Тогда $$\frac{AB}{AC}=\frac{\sin \alpha }{\sin \beta }=$$$$\frac{x \sin \delta }{3y}*\frac{5y}{3x \sin \delta }=$$$$\frac{5}{9}$$

Задание 6649

В трапеции ABCD с боковыми сторонами АВ = 9 и CD = 5 биссектриса угла D пересекает биссектрисы углов А и С в точках М и Nсоответственно, а биссектриса угла В пересекает те же две биссектрисы в точках L и K, причём точка K лежит на основании AD. Найдите отношение МN : KL, если LM : KN = 3 : 7

Ответ: $$\frac{5}{21}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) $$\angle ABK=\angle CBK$$ (BL-биссектриса ), $$\angle CBK=\angle AKB$$ (накрест лежащие) $$\Rightarrow AB=AK=9$$; AL-биссектриса , медиана и высота равнобедренного $$\Delta ABK$$: $$AL\perp BK$$ и $$BL\perp LK(1)$$

     2) Аналогично из $$\Delta CDK$$ : $$CD=DK=5$$; $$DN\perp CK$$; $$CN=NK$$. С учетом (1) - LN-средняя линия $$\Delta BKC$$ и AD=14

     3) $$MK\cap LN=Q$$; $$KM\cap BC=P$$. Тогда : $$LN\left | \right |BC$$, $$BC\left | \right |AD\Rightarrow$$ $$LN\left | \right |AD$$ и : $$\Delta LMN\sim \Delta AMD\Rightarrow$$ $$QN:QL=KD:KA=5:9\Rightarrow$$ $$QL=\frac{9 QN}{5}(2)$$

     4) $$\angle MLN=\angle MNK=90\Rightarrow$$ около $$MNKL$$ можно описать окружность ($$\angle MLK+\angle MNK=180$$) $$\Rightarrow \Delta LMQ\sim \Delta QNM$$: $$\frac{LM}{NK}=\frac{MQ}{QN}=\frac{3}{7}(3)$$

     5) $$\Delta LQK\sim \Delta MQN\Rightarrow$$ $$\frac{MN}{LK}=\frac{MQ}{QL}$$. С учетом (2) : $$\frac{NQ}{QL}=\frac{MQ}{\frac{9QN}{5}}=$$$$\frac{5MQ}{9 QN}(3)$$. С учетом (3): $$\frac{5 MQ}{9 QN}=\frac{5}{9}*\frac{3}{7}=$$$$\frac{5}{21}=\frac{MN}{LK}$$

Задание 6716

Диагонали с длинами $$\sqrt{7}$$ и 4 делят четырёхугольник на части, площади которых образуют арифметическую прогрессию. Найдите площадь четырёхугольника, зная, что угол между большей диагональю и меньшей из сторон равен 30 .

Ответ: $$\sqrt{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть $$S_{AOD}=a_{1}$$; $$S_{AOB}=a_{2}$$; $$S_{BOC}=a_{3}$$; $$S_{COD}=a_{4}$$; $$\angle AOB=\alpha \Rightarrow$$ $$\angle AOD=180-\alpha$$

     2) $$a_{1}=\frac{1}{2}AO*OD \sin (180-\alpha )=$$$$\frac{1}{2}AO*OD \sin \alpha$$ ; $$a_{2}=\frac{1}{2}AO*OB \sin \alpha$$ , $$a_{3}=\frac{1}{2}BO*OC \sin \alpha$$ ; $$a_{4}=\frac{1}{2}CO*OD \sin \alpha$$ . Тогда : $$a_{1}*a_{3}=\frac{1}{4}AO*OD*BO*OC* \sin^{2}\alpha=a_{2}*a_{4}(1)$$

     3) т.к. арифметическая прогрессия ( пусть ее разность d ) , то: $$a_{2}=a_{1}+d$$; $$a_{3}=a_{1}+2d$$; $$a_{4}=a_{1}+3d$$. С учетом (1): $$a_{1}(a_{1}+2d)=(a_{1}+d))(a_{1}+3d)\Leftrightarrow$$ $$a_{1}^{2}+2a_{1}d=a_{1}^{2}+4a_{1}d+3d^{2}\Leftrightarrow$$ $$2a_{1}d+3d^{2}=0\Leftrightarrow$$ $$d(2a_{1}+3)=0$$. $$2a_{1}+3>0$$ ,т.к. $$a_{1}$$ - площадь , тогда d=0, но тогда $$a_{1}=a_{2}=a_{3}=a_{4}(2)$$

     4)С учетом (2) : $$AO *OD=AO*BO$$, $$(a_{1}=a_{2})\Rightarrow$$ $$BO=OD$$; $$AO*OB=BO*OC$$$$(a_{2}=a_{3})\Rightarrow$$$$AO=OD$$. Тогда ABCD-параллелограмм

     5) $$BO=OD=\frac{\sqrt{7}}{2}$$; $$AO=OC=2$$ Из $$\Delta AOB$$ : Пусть AB=x, тогда по теореме косинусов :

$$\frac{7}{4}=x^{2}+4-2x*2\frac{\sqrt{3}}{2}\Leftrightarrow$$ $$x^{2}-2x\sqrt{3}+\frac{9}{4}=0\Leftrightarrow$$ $$D=12-9=3$$

$$x_{1}=\frac{2\sqrt{3}+\sqrt{3}}{2}=\frac{3\sqrt{3}}{2}$$

$$x_{2}=\frac{2\sqrt{3}-\sqrt{3}}{2}=\frac{\sqrt{3}}{2}$$

     6) при $$AB=\frac{3\sqrt{3}}{2}=\frac{\sqrt{27}}{2}$$ из $$\Delta ABC:$$ $$BC=\sqrt{\frac{9*3}{4}+16-2*4*\frac{3\sqrt{3}}{2}*\frac{\sqrt{3}}{2}}=$$$$\sqrt{\frac{27}{4}+16-18}=$$$$\sqrt{\frac{27}{4}-2}=\frac{\sqrt{19}}{2}<AB\Rightarrow$$ не подходит по условию , что AB –меньшая.

Тогда:  $$S_{ABO}=\frac{1}{2}*AB*BO\sin BAO=$$$$\frac{1}{2}*\frac{\sqrt{3}}{2}*2*\frac{1}{2}=$$$$\frac{\sqrt{3}}{4}$$ и $$S_{ABCD}=\sqrt{3}$$

Задание 6743

Длины боковых сторон трапеции равны 6 см и 10 см. В трапецию можно вписать окружность. Средняя линия делит трапецию на части, отношения площадей которых равно $$\frac{5}{11}$$ . Найдите длины оснований трапеции.

Ответ: 2 и 14
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Т.к в ABCD можно вписать окружность , то $$AB+CD=BC+AD=16$$. Пусть BC=x $$\Rightarrow$$ AD=16-x

     2) Пусть $$OL\perp BC$$ и $$ON\perp AD$$ (радиусы в точку касания) , и $$OL=ON=y$$; $$MK=\frac{BC+AD}{2}=8$$ - средняя линия. Тогда $$S_{MBCK}=\frac{x+8}{2}*y$$; $$S_{AMKD}=\frac{16-x+8}{2}*y=\frac{24-x}{2}*y$$

     3) $$\frac{S_{MBCK}}{S_{AMKD}}=\frac{\frac{x+8}{2}*y}{\frac{24-x}{2}*y}=$$$$\frac{5}{11}\Leftrightarrow$$ $$\frac{x+8}{24-x}=\frac{5}{11}\Leftrightarrow$$ $$11x+88=120-5x\Leftrightarrow$$$$16x=32\Leftrightarrow$$ $$x=2\Rightarrow$$ $$BC=2; AD=14$$

Задание 6790

Вершина С прямоугольника ABCD лежит на стороне КМ равнобедренной трапеции АВКМ (ВК || АМ), Р – точка пересечения отрезков АМ и СD. Найдите отношение площадей прямоугольника и трапеции, если АВ = 2ВС, АР = 3ВК.

Ответ: $$\frac{3}{1+2\sqrt{2}}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Построим через $$CH\left | \right |AM$$ ($$H=CH\cap AB$$)

Пусть $$HK\cap BC=N$$; HBKC - равнобедренная трапеция $$\Rightarrow$$ BC=HK

Пусть $$BC=x=HK$$; $$AB=2x\Rightarrow$$ $$S_{ABCD}=BC*AB=2x^{2}$$

     2) $$\Delta BKN\sim \Delta HNC$$; $$\frac{BN}{NC}=\frac{BK}{HC}(1)$$; $$HC\left | \right |AM$$ и $$AB\left | \right |CD\Rightarrow$$ HCPA - параллелограмм и HC=AP

С учетом (1): $$\frac{BN}{NC}=\frac{BK}{HC}=\frac{BK}{AP}=\frac{1}{3}\Rightarrow$$ $$BN=\frac{1}{4}*BC=\frac{x}{4}$$, $$NC=\frac{3}{4}*BC=\frac{3x}{4}=NH$$

     3) из $$\Delta BNH$$: $$BH=\sqrt{NH^{2}-BN^{2}}=\frac{x}{\sqrt{2}}$$

$$tg\angle BHC=\frac{BC}{BH}=\frac{x}{\frac{x}{\sqrt{2}}}=$$$$\sqrt{2}=tg\angle A\Rightarrow$$ $$\sin A=\sqrt{\frac{2}{3}}$$, $$\cos A=\sqrt{\frac{1}{3}}$$

$$HC=\frac{BC}{\sin HBC}=\frac{x\sqrt{3}}{\sqrt{2}}\Rightarrow$$ $$BK=\frac{x\sqrt{3}}{3\sqrt{2}}$$

     4)Пусть $$BL\perp AM$$, тогда из $$\Delta ABL$$: $$AL=AB*\cos A=2x*\frac{\sqrt{1}}{\sqrt{3}}=\frac{2x}{\sqrt{3}}\Rightarrow$$ $$AM=BK+2AL=\frac{x\sqrt{3}}{3\sqrt{2}}+\frac{2*2x}{\sqrt{3}}=$$$$\frac{x(\sqrt{3}+4\sqrt{6})}{3\sqrt{2}}$$, $$BL=AB \sin A=\frac{2x\sqrt{2}}{\sqrt{3}}$$

$$S_{ABKM}=\frac{\frac{x\sqrt{3}}{3\sqrt{2}}+\frac{x\sqrt{3}+x*4\sqrt{6}}{3\sqrt{2}}}{2}*\frac{2x\sqrt{2}}{\sqrt{3}}=$$$$\frac{2x\sqrt{3}+4x\sqrt{6}}{6\sqrt{2}}*\frac{2x\sqrt{2}}{\sqrt{3}}=$$$$\frac{2x^{2}(\sqrt{3}+2\sqrt{6})}{3\sqrt{3}}$$

     5) $$\frac{S_{ABCD}}{S_{ABKM}}=2x^{2}:\frac{2x^{2}(\sqrt{3}+2\sqrt{6})}{3\sqrt{3}}=$$$$\frac{3\sqrt{3}}{\sqrt{3}+2\sqrt{6}}=$$$$\frac{3\sqrt{3}}{\sqrt{3}(1+2\sqrt{2})}=\frac{3}{1+2\sqrt{2}}$$

Задание 6861

На сторонах AB, BC, CD и DA параллелограмма ABCD взяты соответственно точки M, N, K и L, причём AM : MB = CK : KD = 1/2 а BN : NC = DL : LA = 1/3. Найдите площадь четырёхугольника, вершины которого – пересечения отрезков AN, BK, CL и DM, если площадь параллелограмма ABCD равна 1

Ответ: $$\frac{6}{13}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

       1) Введем обозначения, как показано на рисунке.

       2) В силу равенства BLи AD и AB и CD, а так же, $$\frac{AM}{MB}=\frac{CK}{KD}$$ и $$\frac{BN}{NC}=\frac{DL}{AD}$$, получим равенство $$\Delta BKC$$ и $$\Delta AMD$$ ; $$\Delta ABN$$ и $$\Delta CDL$$, и что MBKD, ANCL - параллелограммы $$\Rightarrow$$ $$BK\left | \right |MD$$ и $$AN\left | \right |CL$$

       3) Тогда по т. Фалеса $$\frac{BA_{1}}{BB_{1}}=\frac{BN}{BC}=\frac{1}{4}$$$$\Rightarrow$$, если $$S_{BNA_{1}}=y$$, то $$S_{BCB_{1}}=16y$$ (площади подобных относятся как квадрат коэффициента подобия)$$\Rightarrow$$ $$S_{NCB_{1}A_{1}}=15y$$. Аналогично, $$S_{DC_{1}L}=y$$; $$S_{AD_{1}C_{1}L}=15y$$

Если $$S_{AMD_{1}}=x$$ , то $$S_{ABA_{1}}=9x$$$$\Rightarrow$$ $$S_{MBA_{1}D_{1}}=8x$$

Аналогично, $$S_{CKB_{1}}=x$$; $$S_{B_{1}KDC_{1}}=8x$$ ,пусть $$S_{A_{1}B_{1}C_{1}D_{1}}=Z$$

       4) $$S_{MBKD}=\frac{MB}{AB}*S_{ABCD}=\frac{2}{3}=2*8x+z$$

$$S_{ABCL}=\frac{NC}{BC}*S_{ABCD}=\frac{3}{4}=2*15y+z$$

$$S_{ABCD}=1=2*16y+2*9x+z$$

Получим :

$$\left\{\begin{matrix}16x+z=\frac{2}{3}\\30y+z=\frac{3}{4}\\32y+18x+z=1\end{matrix}\right.\Leftrightarrow$$ $$\left\{\begin{matrix}x=\frac{\frac{2}{3}-z}{16}\\y=\frac{\frac{3}{4}-z}{30}\\32(\frac{\frac{3}{4}-z}{30}+18(\frac{\frac{2}{3}-z}{16})+z=1|*120\end{matrix}\right.\Leftrightarrow$$$$8(12-16z)+15(6-9z)+120z=120\Leftrightarrow$$$$143z=66\Leftrightarrow$$$$z=\frac{6}{13}$$

Задание 6909

Диагонали с длинами $$\sqrt{7}$$ и 4 делят четырехугольник на части, площади которых образуют арифметическую прогрессию. Найдите площадь четырёхугольника, зная, что угол между большей диагональю и меньшей из сторон равен 30.

Ответ: $$\sqrt{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     1) Пусть $$S_{AOD}=a_{1}$$; $$S_{AOB}=a_{2}$$; $$S_{BOC}=a_{3}$$; $$S_{COD}=a_{4}$$; $$\angle AOB=\alpha \Rightarrow$$ $$\angle AOD=180-\alpha$$

     2) $$a_{1}=\frac{1}{2}AO*OD \sin (180-\alpha )=$$$$\frac{1}{2}AO*OD \sin \alpha$$ ; $$a_{2}=\frac{1}{2}AO*OB \sin \alpha$$ , $$a_{3}=\frac{1}{2}BO*OC \sin \alpha$$ ; $$a_{4}=\frac{1}{2}CO*OD \sin \alpha$$ . Тогда : $$a_{1}*a_{3}=\frac{1}{4}AO*OD*BO*OC* \sin^{2}\alpha=a_{2}*a_{4}(1)$$

     3) т.к. арифметическая прогрессия ( пусть ее разность d ) , то: $$a_{2}=a_{1}+d$$; $$a_{3}=a_{1}+2d$$; $$a_{4}=a_{1}+3d$$. С учетом (1): $$a_{1}(a_{1}+2d)=(a_{1}+d))(a_{1}+3d)\Leftrightarrow$$ $$a_{1}^{2}+2a_{1}d=a_{1}^{2}+4a_{1}d+3d^{2}\Leftrightarrow$$ $$2a_{1}d+3d^{2}=0\Leftrightarrow$$ $$d(2a_{1}+3)=0$$. $$2a_{1}+3>0$$ ,т.к. $$a_{1}$$ - площадь , тогда d=0, но тогда $$a_{1}=a_{2}=a_{3}=a_{4}(2)$$

     4)С учетом (2) : $$AO *OD=AO*BO$$, $$(a_{1}=a_{2})\Rightarrow$$ $$BO=OD$$; $$AO*OB=BO*OC$$$$(a_{2}=a_{3})\Rightarrow$$$$AO=OD$$. Тогда ABCD-параллелограмм

     5) $$BO=OD=\frac{\sqrt{7}}{2}$$; $$AO=OC=2$$ Из $$\Delta AOB$$ : Пусть AB=x, тогда по теореме косинусов :

$$\frac{7}{4}=x^{2}+4-2x*2\frac{\sqrt{3}}{2}\Leftrightarrow$$ $$x^{2}-2x\sqrt{3}+\frac{9}{4}=0\Leftrightarrow$$ $$D=12-9=3$$

$$x_{1}=\frac{2\sqrt{3}+\sqrt{3}}{2}=\frac{3\sqrt{3}}{2}$$

$$x_{2}=\frac{2\sqrt{3}-\sqrt{3}}{2}=\frac{\sqrt{3}}{2}$$

     6) при $$AB=\frac{3\sqrt{3}}{2}=\frac{\sqrt{27}}{2}$$ из $$\Delta ABC:$$ $$BC=\sqrt{\frac{9*3}{4}+16-2*4*\frac{3\sqrt{3}}{2}*\frac{\sqrt{3}}{2}}=$$$$\sqrt{\frac{27}{4}+16-18}=$$$$\sqrt{\frac{27}{4}-2}=\frac{\sqrt{19}}{2}<AB\Rightarrow$$ не подходит по условию , что AB –меньшая.

Тогда:  $$S_{ABO}=\frac{1}{2}*AB*BO\sin BAO=$$$$\frac{1}{2}*\frac{\sqrt{3}}{2}*2*\frac{1}{2}=$$$$\frac{\sqrt{3}}{4}$$ и $$S_{ABCD}=\sqrt{3}$$