Перейти к основному содержанию

ОГЭ

(C5) Геометрическая задача на доказательство

Треугольники и их элементы

Задание 5560

В остроугольном треугольнике ABC угол B равен 60° . Докажите, что точки A, C, центр описанной окружности треугольника ABC и центр вписанной окружности треугольника ABC лежат на одной окружности.

Ответ: ч.т.д.
Скрыть

1) $$O$$ - центр описанной окружности $$\Rightarrow$$ $$\angle AOC=2\angle ABC=120^{\circ}$$ (вписанный и центральный углы)

2) $$\angle A+\angle C=180^{\circ}-\angle B=120^{\circ}$$; $$\angle IAC=\frac{\angle A}{2}$$; $$\angle ICA=\frac{\angle C}{2}$$ ($$I$$ - центр вписанной $$\Rightarrow$$ $$AI$$ и $$CI$$ - биссектрисы) $$\Rightarrow$$ $$\angle IAC+\angle ICA=\frac{\angle A+\angle C}{2}=60^{\circ}$$ $$\Rightarrow$$ $$\angle AIC=120^{\circ}$$

3) из п.1 и п.2: $$\angle AOC=\angle AIC$$ (они опираются на одну сторону $$AC$$) $$\Rightarrow$$ $$AOIC$$ - вписанный четырехугольник.

Задание 5561

В остроугольном треугольнике ABC точки A, C, центр описанной окружности O и центр вписанной окружности I лежат на одной окружности. Докажите, что угол ABC равен 60°.

Ответ:

Задание 5562

На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны (см. рисунок). Оказалось, что углы АDB и BEC тоже равны. Докажите, что треугольник АВС — равнобедренный.

Ответ:

Задание 5563

Окружность касается стороны AB треугольника ABC, у которого ∠ C = 90°, и продолжений его сторон AC и BC за точки A и B соответственно. Докажите, что периметр треугольника ABC равен диаметру этой окружности.

Ответ:

Задание 5564

В треугольнике ABC угол B равен 36°,AB=BC, AD — биссектриса. Докажите, что треугольник ABD — равнобедренный.

Ответ:

Задание 5565

Докажите, что у равных треугольников ABC и A1B1C1 биссектрисы, проведённые из вершины A и A1, равны.

Ответ:

Задание 5566

Два равных прямоугольника имеют общую вершину O(см. рис.). Докажите, что площади треугольников AOK и COM равны.

Ответ:

Задание 5567

Два равносторонних треугольника имеют общую вершину. Докажите, что отмеченные на рисунке отрезки AB и CD равны.

Ответ:

Задание 5568

Докажите, что биссектрисы углов при основании равнобедренного треугольника равны

Ответ:

Задание 5569

На медиане KF треугольника MPK отмечена точка E. Докажите, что если EM=EP, то KM=KP .

Ответ:

Задание 5570

На стороне AC треугольника ABC отмечены точки D и E так, что AD=CE . Докажите, что если BD=BE, то AB=BC.

Ответ:

Задание 5571

В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что треугольник MNK — равносторонний.

Ответ:

Задание 5572

Высоты AA1 и BB1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы AA1B1 и ABB1 равны.

Ответ:

Задание 6072

Докажите, что если у треугольника равны две медианы, то этот треугольник равнобедренный.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Пусть АМ=СН-медианы . $$\frac{LN}{LM}=\frac{2}{1}$$ и $$\frac{CL}{CH}=\frac{2}{1}$$(свойство медиан), но т.к. AM=CH, то AL=LC ,LH=LM.

2) $$\angle HLA=\angle MLC$$ (вертикальные) $$\Delta HLA=\Delta MLC$$ (по 2-м сторонам и углу между ними) $$\Rightarrow$$ AH=MC, но AH=HB и CM=MB $$\Rightarrow$$ AB=BC.

Задание 6166

В квадрат, площадью 24 см2 вписан прямоугольник так, что на каждой стороне квадрата лежит одна вершина прямоугольника. Длины сторон прямоугольника относятся как 1:3. Найдите площадь прямоугольника.

Ответ: 9
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Пусть $$\angle B_{1}C_{1}B=\alpha$$ , тогда $$\angle D_{1}C_{1}C=90-\alpha$$ , тогда $$\angle C_{1}D_{1}C=\alpha$$ .

Рассуждая аналогично получим :

$$\angle B_{1}C_{1}B=\angle C_{1}D_{1}C =\angle DA_{1}D_{1}=\angle A_{1}B_{1}A=\alpha$$ , следовательно , $$\angle B_{1}C_{1}B\sim \angle C_{1}D_{1}C \sim \angle DA_{1}D_{1}\sim \angle A_{1}B_{1}A$$

2)т.к. $$B_{1}C_{1}:C_{1}D_{1}=1:3$$,то пусть $$B_{1}B=x\Rightarrow CC_{1}=3x, BC_{1}=y$$, тогда $$CD_{1}=3y.$$

3) т.к. $$A_{1}B_{1}=C_{1}D_{1}$$ и $$B_{1}C_{1}=A_{1}D_{1}$$ и все треугольники подобны , то $$\Delta A_{1}B_{1}A=\Delta C_{1}D_{1}C$$ и $$\Delta B_{1}C_{1}B=\Delta DA_{1}D_{1}$$ следовательно $$DD_{1}=x$$

4) из п. 3 получили, что $$BC=y+3x$$ и $$CD=x+3y$$, тогда

$$y+3x=x+3y\Rightarrow x=y$$

5)$$AC=\sqrt{S_{ABCD}}=\sqrt{24}$$

$$\frac{BC_{1}}{CC_{1}}=\frac{1}{3}\Rightarrow$$$$ BC_{1}=\frac{\sqrt{24}}{4}\Rightarrow$$$$CC_{1}=\frac{3\sqrt{24}}{4}$$

6) $$\Delta B_{1}BC_{1}$$: $$B_{1}C_{1}=\sqrt{(\frac{\sqrt{24}}{4})^{2}+(\frac{\sqrt{24}}{4})^{2}}=\sqrt{3}.$$Тогда $$C_{1}D_{1}=3\sqrt{3}.$$

7)$$S_{A_{1}B_{1}C_{1}D_{1}}=3\sqrt{3}*\sqrt{3}=9$$