Перейти к основному содержанию

ЕГЭ Профиль

(C7) Числа и их свойства

Числа и их свойства

 
Аналоги к этому заданию:

Задание 9953

Множество А состоит из натуральных чисел. Количество чисел в А больше семи. Наименьшее общее кратное всех чисел в А равно q и никакие два числа в множестве А не являются взаимно простыми. Найдите все числа множества А, если:

а) q=210 , произведение всех чисел из А делится на 1920 и не является квадратом никакого целого числа.
б) q=390, произведение всех чисел из А не делится на 160 и не является четвертой степенью никакого целого числа.
в) q=330, произведение всех чисел из А не является четвертой степенью никакого целого числа, а сумма всех чисел из А равна 755.
Ответ:
 
Аналоги к этому заданию:

Задание 9881

Саша придумала уравнение $$n^{3}+13n=k^{3}+273$$ 

а) Может ли данное уравнение иметь натуральные решения при k=21?
б) Может ли данное уравнение иметь натуральные решения при $$n\geq 2020$$
в) Найдите все пары (n;k) натуральных чисел, удовлетворяющих уравнению.
Ответ:
 
Аналоги к этому заданию:

Задание 9806

На доске написано 11 различных натуральных чисел. Среднее арифметическое шести наименьших из них равно 8, а среднее арифметическое семи наибольших равно 14.

а) Может ли наибольшее из этих одиннадцати чисел равняться 16?
б) Может ли среднее арифметическое всех одиннадцати чисел равняться 10?
в) Найдите наименьшее значение среднего арифметического всех одиннадцати чисел.
Ответ: нет; нет; $$\frac{123}{11}$$
 
Аналоги к этому заданию:

Задание 9786

Вовочка написал домашнее сочинение и допустил орфографические и пунктуационные ошибки. Затем его сестра проверила сочинение и исправила часть ошибок. В новом тексте количество пунктуационных ошибок оказалось в пределах от 15,5% до 18% от числа пунктуационных ошибок в старом тексте. Количество орфографических ошибок уменьшилось втрое и составило 25% от числа пунктуационных ошибок в первоначальном тексте.

а) Может ли в новом тексте содержаться ровно 5 ошибок?
б) Может ли в новом тексте содержаться ровно 6 ошибок?
в) Какое наименьшее число ошибок могло содержаться в первоначальном тексте?
Ответ:
 
Аналоги к этому заданию:

Задание 9686

В классе учится 15 мальчиков и n девочек. Анализируя успеваемость учащихся по предмету за полугодие, завуч заметил, что общее количество оценок в журнале составляет $$n^{2}+13n-2$$, причём все ученики имеют одинаковое количество оценок.

а) Может ли в классе быть 16 девочек?
б) Сколько может быть девочек в классе?
в) Сколько оценок получил каждый ученик по предмету за полугодие?
Ответ: а)нет б)13 в)12
 
Аналоги к этому заданию:

Задание 9666

На доске написано 12 различных натуральных чисел. Среднее арифметическое семи наименьших из них равно 8, а среднее арифметическое семи наибольших равно 16.

а) Может ли наибольшее из этих двенадцати чисел равняться 18?
б) Может ли среднее арифметическое всех двенадцати чисел равняться 11?
в) Найдите наименьшее значение среднего арифметического всех двенадцати чисел
Ответ: а) нет; б) нет; в) 11,75
 
Аналоги к этому заданию:

Задание 9638

а) Существует ли пара натуральных чисел, наибольший общий делитель которых равен 5, а наименьшее общее кратное – 123?
б) Существует ли пара натуральных чисел, наибольший общий делитель которых равен 7, а наименьшее общее кратное – 294?
в) Найдите все пары натуральных чисел, наибольший общий делитель которых равен 13, а наименьшее общее кратное – 78.
Ответ:
 
Аналоги к этому заданию:

Задание 9388

Все члены конечной последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, либо в 14 раз больше, либо в 14 раз меньше предыдущего. Сумма всех членов последовательности равна 7424.

а) Может ли последовательность состоять из двух членов?

б) Может ли последовательность состоять из трёх членов?

в) Какое наибольшее количество членов может быть в последовательности?

Ответ:
 
Аналоги к этому заданию:

Задание 9368

Все члены конечной последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, либо в 12 раз больше, либо в 12 раз меньше предыдущего. Сумма всех членов последовательности равна 8750.

а) Может ли последовательность состоять из двух членов?

б) Может ли последовательность состоять из трёх членов?

в) Какое наибольшее количество членов может быть в последовательности?

Ответ:
 
Аналоги к этому заданию:

Задание 9167

Будем называть дробь «простой», если её числитель равен 1, а знаменатель – натуральное число.

а) Запишите число 1 в виде суммы трёх различных простых дробей.

б) Можно ли записать число 1 в виде суммы двух различных простых дробей?

в) Какие действительные числа, меньшие 1, можно записать в виде суммы некоторого числа различных простых дробей?

Ответ: да; нет; положительное рациональное число, меньшее 1
 
Аналоги к этому заданию:

Задание 9051

На сайте школы идет голосование на звание «Лучший ученик года», где каждый посетитель голосует только за одного из претендентов. Рейтинг каждого претендента (доля голосов, отданных за него) выражается в процентах, округленных до целого числа. Например, числа 9,3; 17,5 и 19,9 округляются до 9; 18 и 20 соответственно.

а) Всего проголосовало 13 посетителей сайта. Мог ли рейтинг одного из претендентов равняться 41?

б) Пусть претендентов четверо. Могла ли сумма рейтингов быть больше 100?

в) На сайте отображалось, что рейтинг некоторого претендента равнялся 5. Это число не изменилось и после того, как Игорь проголосовал за него. При каком наименьшем числе отданных за всех претендентов голосов, включая Игоря, такое возможно?

Ответ:
 
Аналоги к этому заданию:

Задание 8877

На листочке записано 13 различных натуральных чисел. Среднее арифметическое семи наименьших из них равно 7, среднее арифметическое семи наибольших из них равно 16.

а) Может ли наименьшее из 13 чисел равняться 5?

б) Может ли среднее арифметическое всех 13 чисел равняться 12?

в) Пусть P – среднее арифметическое всех 13 чисел, Q – седьмое по величине число. Найдите наибольшее значение выражения.

Ответ:
Аналоги к этому заданию:

Задание 8723

В ящике лежит 58 овощей, масса каждого из которых выражается целым числом граммов. В ящике есть хотя бы два овоща различной массы, а средняя масса всех овощей равна 1000 г. Средняя масса овощей, масса каждого из которых меньше 1000 г, равна 976 г. Средняя масса овощей, масса каждого из которых больше 1000 г, равна 1036 г.

а) Могло ли в ящике оказаться поровну овощей массой меньше 1000 г и овощей массой больше 1000 г?
б) Могло ли в ящике оказаться ровно 12 овощей, масса каждого из которых равна 1000 г?
в) Какую наименьшую массу может иметь овощ в этом ящике?
Ответ: нет; нет; 240 гр.
Аналоги к этому заданию:

Задание 8703

В ящике лежит 76 фруктов, масса каждого из которых выражается целым числом граммов. В ящике есть хотя бы два фрукта различной массы, а средняя масса всех фруктов равна 100 г. Средняя масса фруктов, масса каждого из которых меньше 100 г, равна 85 г. Средняя масса фруктов, масса каждого из которых больше 100 г, равна 124 г.

а) Могло ли в ящике оказаться поровну фруктов массой меньше 100 г и фруктов массой больше 100 г?
б) Могло ли в ящике оказаться меньше 8 фруктов, масса каждого из которых равна 100 г?
в) Какую наибольшую массу может иметь фрукт в этом ящике?
Ответ: нет, нет, 676 гр.
Аналоги к этому заданию:

Задание 1339

Ре­ши­те в на­ту­раль­ных чис­лах урав­не­ние $$n^{k+1}-n!=5(30k+11)$$

Ответ: $$n=5 , k=3$$
Аналоги к этому заданию:

Задание 1338

Перед каж­дым из чисел 5, 6, . . ., 10 и 12, 13, . . ., 16 про­из­воль­ным об­ра­зом ста­вят знак плюс или минус, после чего к каж­до­му из об­ра­зо­вав­ших­ся чисел пер­во­го на­бо­ра при­бав­ля­ют каж­дое из об­ра­зо­вав­ших­ся чисел вто­ро­го на­бо­ра, а затем все 30 по­лу­чен­ных ре­зуль­та­тов скла­ды­ва­ют. Какую наи­мень­шую по мо­ду­лю и какую наи­боль­шую сумму можно по­лу­чить в итоге?

Ответ: 1 и 645
Аналоги к этому заданию:

Задание 1337

Мно­же­ство А со­сто­ит из на­ту­раль­ных чисел. Ко­ли­че­ство чисел в А боль­ше семи. Наи­мень­шее общее крат­ное всех чисел из А равно 210. Для любых двух чисел из А их наи­боль­ший общий де­ли­тель боль­ше еди­ни­цы. Про­из­ве­де­ние всех чисел из А де­лит­ся на 1920 и не яв­ля­ет­ся квад­ра­том ни­ка­ко­го це­ло­го числа. Найти числа, из ко­то­рых со­сто­ит А.

Ответ: {6,10,14,30,42,70,105,210}
Аналоги к этому заданию:

Задание 1336

Най­ди­те все пары  $$(x;y)$$  целых чисел, удо­вле­тво­ря­ю­щие си­сте­ме не­ра­венств:

$$\left\{\begin{matrix}x^{2}+y^{2}< 18x-20y-166\\ 32x-y^{2}> x^2+12y+271\end{matrix}\right.$$

Ответ: (12;-8)
Аналоги к этому заданию:

Задание 1335

Най­ди­те все пары на­ту­раль­ных чисел m и n, яв­ля­ю­щи­е­ся ре­ше­ни­я­ми урав­не­ния $$2^{m}-3^{n}=1$$

Ответ: m=2 , n=1
Аналоги к этому заданию:

Задание 1334

Най­ди­те все трой­ки на­ту­раль­ных чисел k, m и n, удо­вле­тво­ря­ю­щие урав­не­нию $$2\cdot k!=m!-2\cdot n! (1!=1;2!=1*2;n!=1*2*...*n)$$

Ответ: k=1 ,n=2, k=3 ; k=n=3 , m =4 ; k=2, n=1, m=3
Аналоги к этому заданию:

Задание 1333

Каж­дое из чисел 2, 3, …, 7 умно­жа­ют на каж­дое из чисел 13, 14, …, 21 и перед каж­дым из по­лу­чен­ных про­из­ве­де­ний про­из­воль­ным об­ра­зом ста­вят знак плюс или минус, после чего все 54 по­лу­чен­ных ре­зуль­та­та скла­ды­ва­ют. Какую наи­мень­шую по мо­ду­лю и какую наи­боль­шую сумму можно по­лу­чить в итоге?

Ответ: 1 и 4131
Аналоги к этому заданию:

Задание 1332

Наи­боль­шее целое число, не пре­вос­хо­дя­щее число x, равно  $$\frac{x^{2}+6}{7}$$  Най­ди­те все такие зна­че­ния x.

Ответ: $$1 ; \sqrt{8}; \sqrt{15}; \sqrt{22}; \sqrt{29} ; 6$$
Аналоги к этому заданию:

Задание 1331

За по­бе­ду в шах­мат­ной пар­тии на­чис­ля­ют 1 очко, за ничью ─ 0,5 очка, за про­иг­рыш ─ 0 очков. В тур­ни­ре при­ни­ма­ют уча­стие m маль­чи­ков и d де­во­чек, причём каж­дый иг­ра­ет с каж­дым два­жды.

а) Ка­ко­во наи­боль­шее ко­ли­че­ство очков, ко­то­рое в сумме могли на­брать де­воч­ки, если m = 3, d = 2.
б) Ка­ко­ва сумма на­бран­ных всеми участ­ни­ка­ми очков, если m + d = 10.
в) Ка­ко­вы все воз­мож­ные зна­че­ния d, если m = 7d и из­вест­но, что в сумме маль­чи­ки на­бра­ли ровно в 3 раза боль­ше очков, чем де­воч­ки?
Ответ: а) 14; б) 90; в) 1.
Аналоги к этому заданию:

Задание 1330

Дано трёхзнач­ное на­ту­раль­ное число (число не может на­чи­нать­ся с нуля), не крат­ное 100.
а) Может ли част­ное этого числа и суммы его цифр быть рав­ным 90?
б) Может ли част­ное этого числа и суммы его цифр быть рав­ным 88?
в) Какое наи­боль­шее на­ту­раль­ное зна­че­ние может иметь част­ное дан­но­го числа и суммы его цифр?
Ответ: а) да ; б) нет ; в) 91