Перейти к основному содержанию

ЕГЭ Профиль

(C6) Задача с параметром

Системы с параметром

 

Задание 10580

Найдите все значения параметра $$p$$, при каждом из которых система неравенств

$$\left\{ \begin{array}{c} x^2+18px+77p^2\le 0 \\ {\left(x-324\right)}^2\ge {\left(29p\right)}^2 \end{array} \right.$$

имеет единственное решение.

Ответ: -9;0;18
 

Задание 10620

Найдите все значения параметра $$a$$, при которых уравнение $$2^{\sqrt{x-0,5}}\cdot \left(\sqrt{a-8x^4}-2x^2\right)=0$$

имеет хотя бы одно решение, удовлетворяющее неравенству $$x(x-1)<0$$

Ответ: $$[\frac{3}{4};12)$$
 

Задание 10640

Найдите все значения параметра $$a$$, при каждом из которых система $$\left\{ \begin{array}{c} x^2+\left(2-5a\right)x+4a^2-2a\le 0 \\ x^2+a^2=4 \end{array} \right.$$ имеет хотя бы одно решение.

Ответ: $$[-\sqrt{2};0]; [\frac{16}{17};\sqrt{2}]$$
 

Задание 10696

Найдите все значения параметра $$a$$, при которых система уравнений

$$\left\{ \begin{array}{c} \sqrt{4-2x+y}=2 \\ a{\left(x^2+3y+1\right)}^2-\left(a+1\right)\left(x^2+3y+1\right)-2a-1=0 \end{array} \right.$$

имеет не более 3 решений.

Ответ: {$$-\frac{1}{3}$$};[$$-\frac{1}{10};0$$]
 

Задание 10825

Найдите все значения параметра $$a$$, при каждом из которых система уравнений $$\left\{ \begin{array}{c} \left|y\right|+\left|2x-x^2\right|=4 \\ y^2+{\left(2x-x^2\right)}^2=a^2 \end{array} \right.$$ будет иметь ровно 8 решений.

Ответ: $$(-\sqrt{10};-2\sqrt{2});(2\sqrt{2};\sqrt{10})$$
 

Задание 10864

Найдите все значения $$a$$, при каждом из которых система уравнений $$\left\{ \begin{array}{c} x^2-8x+y^2+4y+15=4\left|2x-y-10\right| \\ x+2y=a \end{array} \right.$$ имеет более двух решений.

Ответ: $$(-5\sqrt{5}];[5;5\sqrt{5})$$
Скрыть

$$\left\{ \begin{array}{c} x^2-8x+y^2+4y+15=4\left|2x-y-10\right|\ (1) \\ x+2y=a\ (2) \end{array} \right.$$

Уравнение (1) равносильно совокупности двух систем $$\left[ \begin{array}{c} \left\{ \begin{array}{c} 2x-y-10\ge 0 \\ x^2-8x+y^2+4y+15=8x-4y-40 \end{array} \right. \\ \left\{ \begin{array}{c} 2x-y-10<0 \\ x^2-8x+y^2+4y+15=-8x+4y+40 \end{array} \right. \end{array} \to \left[ \begin{array}{c} \left\{ \begin{array}{c} y\le 2x-10 \\ x^2-16x+y^2+8y=-55 \end{array} \right. \\ \left\{ \begin{array}{c} y>2x-10 \\ x^2+y^2=25 \end{array} \right. \end{array} \right.\right.$$ $$\to \left[ \begin{array}{c} \left\{ \begin{array}{c} y\le 2x-10 \\ x^2-16x+64+y^2+8y+16=-55+64+16 \end{array} \right. \\ \left\{ \begin{array}{c} y>2x-10 \\ x^2+y^2=25 \end{array} \right. \end{array} \right.\to$$ $$\to \left[ \begin{array}{c} \left\{ \begin{array}{c} y\le 2x-10 \\ {\left(x-8\right)}^2+{\left(y+4\right)}^2=25 \end{array} \right. \\ \left\{ \begin{array}{c} y>2x-10 \\ x^2+y^2=25 \end{array} \right. \end{array} \right.$$

$${\left(x-8\right)}^2+{\left(y+4\right)}^2=25$$ - уравнение окружности с центром (8;-4), $$R_1=5$$, но строить эту окружность будем в области $$y\le 2x-10$$.

$$x^2+y^2=25$$ уравнение окружности с центром (0;0), $$R_2=5$$, но строить эту окружность будем в области $$y>2x-10$$.

(2) $$x+2y=a\to y=-\frac{1}{2}x+\frac{a}{2}$$ - обозначим $$\frac{a}{2}=b\to y=-\frac{1}{2}x+b$$ - это множество прямых, параллельных прямой $$y=-\frac{1}{2}x$$.

Заметим еще, что прямые $$y=2x-10$$ и $$y=-\frac{1}{2}x$$ перпендикулярны, т.к. $$2\cdot \left(-\frac{1}{2}\right)=-1.$$

Найдем те значения b, при которых прямая $$y=-\frac{1}{2}x+b$$ проходит через точки: $$1) A\left(5;0\right)\to 0=-\frac{1}{2}\cdot 5+b,\ b=2,5$$ $$2) B\left(3;-4\right)\to -4=-\frac{1}{2}\cdot 3+b,\ b=-2,5$$ $$3) C(x_0;y_0)\to \left\{ \begin{array}{c} y_0=2x_0 \\ y_0=-0,5x_0+b,\ b=2,5x_0.\ \ CH\bot Ox.\ \ CH=y_0=2x_0,\ OH=x_0 \end{array} \right.$$

$$OC^2=OH^2+CH^2;25=x^2_0+4x^2_0,\ 5x^2_0=25,\ x_0=\pm \sqrt{5}$$

Для точки $$C(\sqrt{5};2\sqrt{5})\to b=2,5\sqrt{5}$$.

Для точки $$D\left(-\sqrt{5};-2\sqrt{5}\right)\to b=-2,5\sqrt{5}$$.

По условию должно быть более двух решений $$\left[ \begin{array}{c} -2\sqrt{5}<\frac{a}{2}\le -2,5\\2,5\le \frac{a}{2}<2\sqrt{5} \end{array} \to \left[ \begin{array}{c} -5\sqrt{5}<a\le -5 \\ 5\le a<5\sqrt{5}\end{array}\right.\right.$$. 

 

Задание 10883

Найдите все значения параметра $$a$$, при каждом из которых система уравнений $$\left\{ \begin{array}{c} 2x-2y-2=\left|x^2+y^2-1\right| \\ y=a(x-1) \end{array} \right.$$ имеет более двух решений.

Ответ: $$a\in (1;2)$$
Скрыть

$$\left\{ \begin{array}{c} 2x-2y-2=\left|x^2+y^2-1\right| \\ y=a(x-1) \end{array} \right.;$$ $$\left[ \begin{array}{c} \left\{ \begin{array}{c} x^2+y^2+1\ge 0 \\ 2x-2y-2=x^2+y^2-1 \\ y=a(x-1) \end{array} \right. \\ \left\{ \begin{array}{c} x^2+y^2-1<0 \\ 2x-2y-2={-x}^2-y^2+1 \\ y=a(x-1) \end{array} \right. \end{array} \right.$$

Рассмотрим каждую систему в совокупности отдельно:

$$1) \left\{ \begin{array}{c} x^2+y^2+1\ge 0 \\ x^2-2x+1+y^2+2y+1=1 \\ y=a(x-1) \end{array} \right.. $$

Выполним преобразования: $$\left\{ \begin{array}{c} x^2+y^2+1\ge 0 \\ {\left(x-1\right)}^2+{\left(y+1\right)}^2=1\ {\rm (1)} \\ y=a(x-1) \end{array} \right.$$

$$2) \left\{ \begin{array}{c} x^2+y^2-1<0 \\ x^2+2x+1+y^2-2y+1=5 \\ y=a(x-1) \end{array} \right..$$

Выполним преобразования: : $$\left\{ \begin{array}{c} x^2+y^2+1\ge 0 \\ {\left(x+1\right)}^2+{\left(y-1\right)}^2=5\ {\rm (2)} \\ y=a(x-1) \end{array} \right.$$

Геометрическое место точек, представляющих собой решения систем $$\left\{ \begin{array}{c} x^2+y^2+1\ge 0 \\ {\left(x-1\right)}^2+{\left(y+1\right)}^2=1 \end{array} \right.$$ и $$\left\{ \begin{array}{c} x^2+y^2-1<0 \\ {\left(x+1\right)}^2+{\left(y-1\right)}^2=5 \end{array} \right.$$ - это две дуги, которые имеют две общие точки $$A(1;0)$$ и $$B(0;1)$$ - место стыка графиков. Системы (1) и (2) будут иметь более двух решений, если графики параметрической прямой и дуг будут иметь более двух точек пересечения.

Параметрическая прямая, проходящая через точки $$A(1;0)$$ и $$B(0;1)$$, имеет с графиком дуг две общие точки. Мы это положение рассматриваем как пограничное. При этом параметр равен $$a=1$$. Данное значение параметра включать в ответ не стоит.

Чтобы найти второе пограничное положение графика параметрической прямой и значение параметра при этом рассмотрим касание графика прямой $$y=a(x-1)$$ и графика окружности $${\left(x+1\right)}^2+{\left(y-1\right)}^2=5$$. Нам известно из условия задачи расстояние от точки $$O_2(-1;1)$$ до параметрической прямой $$y=a(x-1)$$. $$d=\sqrt{5}$$. Воспользуемся этим фактом. (Расстояние от точки до прямой по формуле $$d=\frac{\left|Ax_0+By_0+C\right|}{\sqrt{A^2+B^2}}$$)

Преобразуем уравнение прямой к виду $$Ax+By+C=0$$. $$y=ax-a\to ax-y-a=0$$. Расстояние от точки $$O_2(-1;1)$$ до касательной $$ax-y-a=0$$ равно $$d=\sqrt{5}$$. Следовательно $$\sqrt{5}=\frac{\left|-a-1-a\right|}{\sqrt{a^2+1}}$$.

Откуда $${\left(a-2\right)}^2=0.$$ Или $$a=2$$. 

 

Задание 10940

Найдите все значения $$а$$, при каждом из которых система уравнений $$\left\{ \begin{array}{c} \sqrt{a-y^2}=\sqrt{a-x^2} \\ x^2+y^2=2x+4y \end{array} \right.$$ имеет ровно два различных решения.

Ответ: $$\to a\in [1^2;3^2)$$ или $$[1;9)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть $$\left\{ \begin{array}{c} \sqrt{a-y^2}=\sqrt{a-x^2} \\ x^2+y^2=2x+4y \end{array} \right.\leftrightarrow \left\{ \begin{array}{c} a-y^2=a-x^2 \\ x^2\le a \\ x^2+y^2=2x+4y \end{array} \right.\leftrightarrow \left\{ \begin{array}{c} y=x \\ y=-x \\ -\sqrt{a}\le x\le \sqrt{a} \\ x^2+y^2=2x+4y \end{array} \right.\leftrightarrow$$ $$\leftrightarrow \left\{ \begin{array}{c} -\sqrt{a}\le x\le \sqrt{a} \\ y=x \\ y=-x \\ {\left(x-1\right)}^2+{\left(y-2\right)}^2={\left(\sqrt{5}\right)}^2 \end{array} \right..$$ $$y=x$$ и $$y=-x$$ - прямые - биссектрисы углов 1-4 четвертей. $${\left(x-1\right)}^2+{\left(y-2\right)}^2={\left(\sqrt{5}\right)}^2$$ - окружность с центром (1;2) и $$r=\sqrt{5}$$. При этом будет 3 точки пересечения (0;0); (-1;1) и (3;3). Чтобы было ровно 2 решения (-1;1) или (3;3) должны не удовлетворять условию $$-\sqrt{a}\le x\le \sqrt{a}\to $$ При $$\sqrt{a}\ge 1$$ точка (-1;1) входит всегда, но пока $$\sqrt{a}<3$$, точка (3;3) не входит $$\to a\in [1^2;3^2)$$ или $$[1;9)$$.
 

Задание 11004

Найдите все значения параметра $$a$$, при каждом из которых система уравнений $$\left\{ \begin{array}{c} 2^{2-2y^2}+{\left(\left|x\right|-2\right)}^2=8 \\ 2^{1-y^2}+x=a \end{array} \right.$$ будет иметь ровно 1 решение.

Ответ: -2;2;6
 

Задание 11129

Найдите все значения $$a$$, при каждом из которых система уравнений $$\left\{ \begin{array}{c} x^2+5x+y^2-y-\left|x-5y+5\right|=52 \\ y-2=a(x-5) \end{array} \right.$$ имеет ровно два решения.

Ответ: $$a\in [-\frac{7}{4};8]$$
Скрыть

Рассмотрим два случая:

$$1: \left\{ \begin{array}{c} x-5y+5\ge 0 \\ x^2+5x+y^2-y-\left(x-5y+5\right)=52 \end{array} \right.\leftrightarrow \left\{ \begin{array}{c} x-5y+5\ge 0 \\ x^2+4x+y^2+4y=57 \end{array} \right.\leftrightarrow$$ $$\leftrightarrow \left\{ \begin{array}{c} x-5y+5\ge 0 \\ {\left(x+2\right)}^2+{\left(y+2\right)}^2=65 \end{array} \right.$$

Получили дугу окружности с центром $$A(-2;2)$$ радиуса $$\sqrt{65}.$$

$$2: \left\{ \begin{array}{c} x-5y+5<0 \\ x^2+5x+y^2-y+\left(x-5y+5\right)=52 \end{array} \right.\leftrightarrow \left\{ \begin{array}{c} x-5y+5<0 \\ x^2+6x+y^2-6y=47 \end{array} \right.\leftrightarrow$$ $$\leftrightarrow \left\{ \begin{array}{c} x-5y+5<0 \\ {\left(x+3\right)}^2+{\left(y-3\right)}^2=65 \end{array} \right.\ $$

Получили дугу окружности с центром $$A(-3;3)$$ радиуса $$\sqrt{65}.$$

Решив эти системы, получим точки пересечения окружностей $$C(5;2)$$ и $$D\left(-10;-1\right).$$

Второе уравнение исходной системы представляет собой пучок прямых, проходящих через точку $$C.$$

Решениями системы являются фиксированная точка $$C(5;2)$$ и подвижная точка E - пересечения совокупности дуг с прямой пучка. Необходимо два решения. Значит, прямая пучка не должна пересекать дуги в прямых точках, кроме $$C$$ и $$E$$.

Поскольку коэффициент прямой AC равен $$-\frac{1}{8},$$ то касательная, перпендикулярная АС в точке С имеет наклон 8. Поскольку коэффициент прямой ВС равен $$\frac{4}{7},$$ то касательная, перпендикулярная радиусу BC в точке С имеет наклон $$-\frac{7}{4}.$$ При изменении наклона прямой пучка в промежутке $$\left[-\frac{7}{4};8\right]$$ не будет появляться новых точек пересечения (кроме С и Е).

Ответ: $$a\in [-\frac{7}{4};8]$$

 

Задание 11424

Найдите все значения параметра а, при которых система $$\left\{\begin{matrix} \sqrt{x^{2}+2xy+2y^{2}}=\sqrt{x^{2}-y^{2}}\\ \frac{x^{8}}{(x^{2}+y^{2})^{2}}\cdot(a-x)=1 \end{matrix}\right.$$ имеет ровно четыре решения.

Ответ: $$(\frac{5\sqrt[5]{4}}{4};\frac{5\sqrt[5]{2028}}{12})$$
 

Задание 11452

Найдите все значения параметра a , при каждом из которых система уравнений $$\left\{\begin{matrix} 2x^{2}+2y^{2}=|x|+|y|\\ \frac{y-3}{x-3}=a \end{matrix}\right.$$ будет иметь ровно 3 решения

Ответ: $$1; \frac{5}{6}; \frac{6}{5}; \frac{121\pm 4\sqrt{30}}{119}$$
 

Задание 11734

Найдите все значения параметра a , при каждом из которых система уравнений $$\left\{\begin{matrix} 3^{3}+3a=3x^{3}(x+3)+3x^{2}-3x^{3}+(a+3)(y+3+x)(y+3-x)\\3=y+\sqrt{3(1-3y-x)-3y+x(1-x)} \end{matrix}\right.$$ имеет ровно три решения.

Ответ: -4,5
 

Задание 11753

Найдите все значения параметра параметра а, при которых система уравнений: $$\left\{\begin{matrix} 5|x|+12|y-2|=60\\ y^{2}-a^{2}=4(y-1)-x^{2} \end{matrix}\right.$$ имеет ровно четыре решения.

Ответ: $$(-12;-5);4\frac{8}{13};(5;12)$$
 

Задание 12356

Найдите все значения а, при каждом из которых система уравнений $$\left\{ \begin{array}{c} {\log}_7\left(36-y^2\right)={\log}_7(36-a^2x^2) \\ x^2+y^2=2x+6y \end{array} \right.$$ имеет ровно два различных решения.

Ответ: $$a\leq -3; a=-\frac{1}{3}; a=0; a=\frac{1}{3}; a\geq 3$$