Перейти к основному содержанию

ЕГЭ Профиль

(C4) Планиметрическая задача

Задача на доказательство и вычисление

 

Задание 10393

В остроугольном треугольнике АВС проведены биссектриса AD и медиана ВЕ. Точки M и N являются ортогональными проекциями на сторону АВ точек D и Е соответственно, причем $$\frac{AM}{MB}=\frac{9}{1}$$, $$\frac{AN}{NB}=\frac{2}{3}$$ .

а) Докажите, что треугольник АВС равнобедренный
б) Найдите отношение $$\frac{AD^{2}}{BE^{2}}$$ .
Ответ: 2
 

Задание 10900

Диагональ АС прямоугольника ABCD с центром О образует со стороной АВ угол 30$${}^\circ$$. Точка Е лежит вне прямоугольника, причём $$\angle BEC=120{}^\circ $$.

а) Докажите, что $$\angle CBE=\angle COE$$.
б) Прямая ОЕ пересекает сторону AD прямоугольника в точке K, Найдите ЕК, если известно, что BE = 40 и СЕ = 24.
Ответ: 113
Скрыть

а) По теореме о внешнем угле треугольника $$\angle BOC=2\angle BAO=2\cdot 30{}^\circ =60{}^\circ $$. Поэтому $$\angle BEC+\angle BOC=120{}^\circ +60{}^\circ =180{}^\circ $$.

Значит, точки В, Е, С и О лежат на одной окружности. Вписанные в эту окружность углы СВЕ и СОЕ опираются на одну и ту же дугу, следовательно, $$\angle CBE=\angle COE$$.

б) По теореме косинусов $$BC=\sqrt{BE^2+CE^2-2BE\cdot CE\cdot {\cos 120{}^\circ \ }}=\sqrt{{40}^2\cdot {24}^2-2\cdot 50\cdot 24\cdot (-\frac{1}{2})}=$$ $$=56$$.

Вписанные углы ВЕО и СЕО опираются на равные хорды ВО и СО, значит, ЕО - биссектриса угла ВЕС. Пусть М - точка её пересечения со стороной ВС. По формуле для биссектрисы треугольника $$EM=\frac{2BE\cdot CE\cdot {\cos \frac{1}{2}\angle BEC\ }}{BE+CE}=\frac{2\cdot 40\cdot 24\cdot {\cos 60{}^\circ \ }}{40+24}=15$$.

По свойству биссектрисы треугольника $$\frac{CM}{BM}=\frac{CE}{BE}=\frac{24}{40}=\frac{3}{5}$$, значит, $$CM=\frac{3}{8}BC=\frac{3}{8}\cdot 56=21$$. $$BM=35$$.

По теореме о произведении пересекающихся хорд $$EM\cdot MO=BM\cdot CM$$, откуда находим, что $$MO=\frac{BM\cdot CM}{EM}=\frac{35\cdot 21}{15}=49$$. Треугольники COM и AOK равны по стороне и двум прилежащим к ней углам, поэтому $$OK\ =\ OM$$. Следовательно, $$EK=EM+2OM=15+98=113$$.

 

Задание 11107

Прямая, параллельная основаниям BC и AD трапеции ABCD, пересекает боковые стороны AB и CD в точках M и N соответственно. Диагонали AC и BD пересекаются в точке O. Прямая MN пересекает стороны OA и OD треугольника AOD в точках K и L соответственно.

а) Докажите, что $$ML=NL$$
б) Найдите $$MN$$, если известно, что $$BC=3$$, $$AD=8$$ и $$MK:KL=1:3$$.
Ответ: 6
Скрыть

а) $$\triangle AMK\sim \triangle ABC$$ по двум углам ($$\angle BAC$$ - общий, $$\angle AMK=\angle ABC,$$ как соответственные при параллельных прямых MN и BC).

Аналогично $$\triangle DLN\sim \triangle DBC.$$ Отсюда $$\frac{MK}{BC}=\frac{AM}{AB}=\frac{DN}{DC}=\frac{LN}{BC};MK=LN.$$

б) $$MK:KL=1:3.$$

Пусть $$MK=x=LN,$$ то $$KL=3x,$$ тогда: $$\triangle ABD\sim \triangle MBL$$ (по двум углам): $$\frac{AD}{ML}=\frac{AB}{MB},\frac{AB}{MB}=\frac{8}{4x}=\frac{2}{x}(1)$$

$$\triangle ABC\sim \triangle AMK$$ (по двум углам): $$\frac{MK}{BC}=\frac{AM}{AB},\frac{AM}{AB}=\frac{x}{3}(2)$$

$$\frac{AM}{AB}=\frac{AB-MB}{AB}=1-\frac{MB}{AB};$$ Из $$\left(1\right)$$ следует $$\frac{MB}{AB}=\frac{x}{2}.$$

$$\frac{AM}{AB}=\frac{AB-MB}{AB}=1-\frac{MB}{AB}=1-\frac{x}{2}.$$ Значит, $$\frac{AM}{AB}=1-\frac{x}{2}(3)$$

Приравняем правые части $$(2)$$ и $$(3)$$ и найдем значение $$MN=5x:$$ $$\frac{x}{3}=1-\frac{x}{2};2x=6-3x;5x=6;MN=5x=6.$$

 

Задание 11127

Отрезок, соединяющий середины М и N оснований соответственно ВС и AD трапеции ABCD, разбивает её на две трапеции, в каждую из которых можно вписать окружность.

а) Докажите, что трапеция ABCD равнобедренная.

б) Известно, что радиус этих окружностей равен 4, а меньшее основание ВС исходной трапеции равно 14. Найдите радиус окружности, касающейся боковой стороны АВ, основания AN трапеции ABMN и вписанной в неё окружности.

Ответ: 1
Скрыть

а) Дана трапеция ABCD, в которой M - середина BC, а N - середина AD (см. рисунок ниже). Следовательно, $$BM=MC$$ и $$AN=ND (1)$$. По условию задания в трапецию ABMN можно вписать окружность, значит, суммы ее противоположных сторон равны: $$AB+MN\ =\ BM+AN$$, откуда $$MN\ =\ BM+AN-AB.$$ Аналогично для трапеции MCDN: $$CD+MN\ =\ MC+ND.$$ $$MN\ =\ MC+ND-CD.$$

Приравниваем два выражения для MN, имеем: $$BM+AN-AB\ =\ MC+ND-CD$$ и, учитывая равенство (1), получаем: $$AB\ =\ CD$$

Получаем равенство боковых сторон, значит, трапеция ABCD - равнобедренная.

б) Так как радиус вписанных окружностей равен 4, значит, высота трапеции $$MN=2\cdot 4=8.$$ Также по условию дана длина $$BC=14$$ и, следовательно, $$BM=BC:2=14:2=7.$$ Обозначим BF через x (см. рисунок ниже). Тогда $$BM_1=x\ $$как отрезки касательных.

Получаем, что $$M_1M=7-x$$, поэтому и $$MZ=7-x$$, $$NZ\ =\ MN-MZ\ =\ 8-(7-x)\ =\ x+1,$$ следовательно, $$N_1N=x+1$$ (так как соответствующие отрезки касательных равны). Так как $$MZ=ZN$$ (радиус $$O_1Z$$ вписанной окружности будет параллелен основаниям трапеции), имеем: $$7-x=x+1\to x=3.$$

Значит, $$BF=BM_1\ =\ 3$$. Рассмотрим прямоугольный треугольник $$BO_1A$$ (он прямоугольный, так как $$AO_1$$ и $$BO_1$$ - биссектрисы, а $$\angle A+\angle B=180{}^\circ $$, поэтому $$\angle BO_1A=90{}^\circ $$). Квадрат высоты $$OF_1$$, проведенной из прямого угла, равен: $$O_1F^2=BF\cdot FA\to FA=\frac{16}{3}$$ и по теореме Пифагора $$O_1A=\sqrt{O_1F^2-FA^2}=\sqrt{16+\frac{{16}^2}{9}}=\frac{20}{3}.$$

Обозначим радиус малой окружности $$AO=y$$, тогда $$OA=O_1A-OO_1=O_1A-\left(4+y\right)=\frac{8}{3}-y.$$

Учитывая, что треугольники $$AFO_1$$ и $$AYO$$ подобны по двум углам, можем записать отношение: $$\frac{y}{4}=\frac{AO}{AO_1}=\frac{\frac{8}{3}-y}{\frac{20}{3}}\to 32-12=20y\to y=1$$

 

Задание 11146

На отрезке BD взята точка С. Биссектриса BL равнобедренного треугольника АВС с основанием ВС является боковой стороной равнобедренного треугольника BLD с основанием BD.

а) Докажите, что треугольник DCL равнобедренный.
б) Известно, что $${\cos \angle ABC\ }=\frac{1}{5}.$$ В каком отношении прямая DL делит сторону AB?
Ответ: $$\frac{25}{24}.$$
Скрыть

а) Пусть $$\angle ABL=\angle ABL=\alpha ,$$ тогда $$\angle ACB=\angle ABC=2\alpha ,\ \angle D=\alpha $$ по свойству равнобедренного $$\triangle .$$ $$\angle ACB-$$ внешний в $$\angle DCL\to \angle CLD=\angle ACB-\angle CDL=\alpha =\angle CDL\to \triangle DCL-$$ равнобедренный по признаку.

б) 1) Пусть $$LH\bot BD,H\in BD.$$ В прямоугольном $$\triangle LCH:CH=x,{\cos 2\alpha \ }={\cos \angle ABC\ }=,\ CL=CH:{\cos 2\alpha \ }=5x=CD$$ ($$\triangle DCL-$$ равнобедренный).

2) В равнобедренном $$\triangle BLD$$ высота LH является медианой $$\to BH=DH=CH+CD=6x;$$ тогда $$BC=BH+CH=7x.$$

3) Пусть $$BM=CM=BC:2=3,5x;$$ AM - медиана, высота равнобедренного $$\triangle ABC,$$ тогда из прямоугольного $$\triangle AMC:AC=CM:{\cos 2\alpha \ }=3,5x\cdot 5=17,5x;AL=AC-CL=12,5x.$$

4) $$DL\cap AB=K.$$ Через точку С проведем $$CN\parallel DL,CN\cap AB=N.$$ По т. о пропорциональных отрезках:

- (для $$\angle DBK$$) $$\frac{BN}{NK}=\frac{BC}{CD}=\frac{7x}{5x}=\frac{7}{5}\to BN=7a,\ NK=5a\ \left(a>0\right);$$ тогда $$BK=BN+NK=12a.$$

- (для $$\angle CAN$$) $$\frac{AK}{NK}=\frac{AL}{CL}=\frac{12,5x}{5x}=\frac{125}{50}=\frac{5}{2}\to AK=\frac{5NK}{2}=\frac{25a}{2};$$ тогда $$\frac{AK}{BK}=\frac{25a}{2\cdot 12a}=\frac{25}{24}.$$

 

Задание 11378

В прямоугольнике ABCD диагонали пересекаются в точке О, а угол BDC равен 75°. Точка Р лежит вне прямоугольника, а угол АРВ равен 150°.

а) Докажите, что углы ВАР и РОВ равны.
б) Прямая РО пересекает сторону CD в точке F. Найдите CF, если $$AP=6\sqrt{3}$$ и BР=4.
Ответ: $$\frac{378-84\sqrt{3}}{23}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 11855

Отрезки AK, BL, CN – высоты остроугольного треугольника АВС. Точки Р и Q – проекции точки N на стороны АС и ВС соответственно.

а) Докажите, что прямые PQ и KL параллельны.
б) Найдите площадь четырехугольника PQKL, если известно, что CN=12, AC=13, BC=15.
Ответ: $$\frac{20412}{845}$$
 

Задание 12284

В прямоугольнике ABCD диагонали пересекаются в точке О, а угол BDC равен $$22,5^{\circ}$$. Точка Р лежит вне прямоугольника, а угол ВРС равен $$135^{\circ}$$.

а) Докажите, что углы BСР и РОВ равны.
б) Прямая РО пересекает сторону ​​​​​​​AD в точке F. Найдите DF, если $$ВР=7$$ и $$СР=5\sqrt{2}$$.
Ответ: $$91(5\sqrt{2}-7)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 12314

На сторонах $$АС, АВ$$ и $$ВС$$ прямоугольного треугольника $$АВС$$ с прямым углом $$С$$ вне треугольника $$АВС$$ построены равнобедренные прямоугольные треугольники $$АКС, ALB$$ и $$ВМС$$ с прямыми углами $$К, L$$ и $$М$$ соответственно.

а) Докажите, что $$LC$$ — высота треугольника $$KLM.$$

б) Найдите площадь треугольника $$KLM,$$ если $$LC=4.$$

Ответ: 8
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 12334

На сторонах АС, АВ и ВС прямоугольного треугольника АВС с прямым углом С вне треугольника АВС построены равнобедренные прямоугольные треугольники АКС, ALB и ВМС с прямыми углами К, L и М соответственно.

а) Докажите, что LC - высота треугольника KLM.
б) Найдите площадь треугольника KLM, если LC = 6.
Ответ: 18
Скрыть

а) Рассмотрим четырехугольник ALBC, у которого углы $$ACB=ALB=90^{\circ},$$ а значит, вокруг него можно описать окружность (по свойству: сумма противоположных углов $$ACB+ALB=180^{\circ}$$). Тогда хорды AL = LB (треугольники АКС, ALB и ВМС – равнобедренные) стягивают дуги $$\cup AL=\cup LB,$$ следовательно, вписанные углы, опирающиеся на эти дуги, также равны: $$\angle ACL=\angle LCB=45^{\circ};$$ $$\angle KCA+\angle ACL=45^{\circ}+45^{\circ}=90^{\circ};$$ $$\angle LCB+\angle BCM=90^{\circ},$$ следовательно, LC перпендикулярна KM и LC – высота треугольника KLM.

б) Площадь треугольника KLM можно найти по формуле:

$$S_{KLM}=\frac{1}{2}KM\cdot LC$$

Пусть BC = a, AC = b, CL = d, AB = c, а P – точка пересечения AB и CL. Так как $$\angle ACP=\angle BCP=45^{\circ},$$ то CB – биссектриса треугольника ABC. По свойству биссектрис:

$$\frac{AP}{PB}=\frac{AC}{CB}=\frac{b}{a}$$

Учитывая, что AP + PB = AB = c, получаем систему:

$$\frac{AP}{PB}=\frac{b}{a}$$

$$AP+PB=c$$

С решением:

$$AP=\frac{bc}{a+b}; PB=\frac{ac}{a+b}$$

Так как углы $$\angle ACL=\angle BAL=45^{\circ},$$ то треугольники ACL и PAL подобны по двум углам и:

$$\frac{AC}{PA}=\frac{CL}{AL}\Rightarrow b: \frac{bc}{a+b}=d:\frac{c}{\sqrt{2}}$$

и $$d=\frac{a+b}{\sqrt{2}}.$$ Из равенства KM = KC + CM, получаем:

$$KM=\frac{a}{\sqrt{2}}+\frac{b}{\sqrt{2}}=d=6$$

Следовательно:

$$S_{KLM}=\frac{1}{2}\cdot6\cdot6=18$$

 

Задание 12375

На сторонах АС, АВ и ВС прямоугольного треугольника АВС с прямым углом С во внешнюю сторону построены равнобедренные прямоугольные треугольники АКС, ALB и ВМС с прямыми углами К, L и М соответственно.

а) Докажите, что LC - высота треугольника KLM.
б) Найдите площадь треугольника KLM, если$$\ LC\ =10.$$
Ответ: 50
Скрыть

а) Рассмотрим четырехугольник ALBC, у которого углы $$ACB=ALB=90^{\circ},$$ а значит, вокруг него можно описать окружность (по свойству: сумма противоположных углов $$ACB+ALB=180^{\circ}$$). Тогда хорды AL = LB (треугольники АКС, ALB и ВМС – равнобедренные) стягивают дуги $$\cup AL=\cup LB,$$ следовательно, вписанные углы, опирающиеся на эти дуги, также равны: $$\angle ACL=\angle LCB=45^{\circ};$$ $$\angle KCA+\angle ACL=45^{\circ}+45^{\circ}=90^{\circ};$$ $$\angle LCB+\angle BCM=90^{\circ},$$ следовательно, LC перпендикулярна KM и LC – высота треугольника KLM.

б) Площадь треугольника KLM можно найти по формуле:

$$S_{KLM}=\frac{1}{2}KM\cdot LC$$

Пусть BC = a, AC = b, CL = d, AB = c, а P – точка пересечения AB и CL. Так как $$\angle ACP=\angle BCP=45^{\circ},$$ то CB – биссектриса треугольника ABC. По свойству биссектрис:

$$\frac{AP}{PB}=\frac{AC}{CB}=\frac{b}{a}$$

Учитывая, что AP + PB = AB = c, получаем систему:

$$\frac{AP}{PB}=\frac{b}{a}$$

$$AP+PB=c$$

С решением:

$$AP=\frac{bc}{a+b}; PB=\frac{ac}{a+b}$$

Так как углы $$\angle ACL=\angle BAL=45^{\circ},$$ то треугольники ACL и PAL подобны по двум углам и:

$$\frac{AC}{PA}=\frac{CL}{AL}\Rightarrow b: \frac{bc}{a+b}=d:\frac{c}{\sqrt{2}}$$

и $$d=\frac{a+b}{\sqrt{2}}.$$ Из равенства KM = KC + CM, получаем:

$$KM=\frac{a}{\sqrt{2}}+\frac{b}{\sqrt{2}}=d=10$$

Следовательно:

$$S_{KLM}=\frac{1}{2}10\cdot10=50$$

 

Задание 12553

В треугольнике АВС все стороны различны. Прямая, содержащая высоту ВН треугольника АВС, вторично пересекает описанную около этого треугольника окружность в точке F. Отрезок BD - диаметр этой окружности.

а) Докажите, что $$AD\ =\ CF.$$

б) Найдите DF, если радиус описанной около треугольника АВС окружности равен 12, $$\angle BAC\ =\ 35{}^\circ $$, $$\angle ACB\ =\ 65{}^\circ .$$

Ответ: 12
 

Задание 12575

В треугольнике АВС все стороны различны. Прямая, содержащая высоту ВН треугольника АВС, вторично пересекает описанную около этого треугольника окружность в точке К. Отрезок BN - диаметр этой окружности.

а) Докажите, что АС и KN параллельны.

б) Найдите расстояние от точки N до прямой АС, если радиус описанной около треугольника АВС окружности равен $$6\sqrt{6}$$, $$\angle BAC\ =\ 30{}^\circ ,\ \angle ABC=\ 105{}^\circ .$$

Ответ: 9
 

Задание 12595

На гипотенузе АВ и катетах ВС и АС прямоугольного треугольника АВС отмечены точки М, N и К соответственно, причём прямая NK параллельна прямой АВ и $$BM\ =\ BN\ =\frac{1}{2}KN.$$ Точка Р - середина отрезка KN.

а) Докажите, что четырёхугольник ВСРМ - равнобедренная трапеция.

б) Найдите площадь треугольника АВС, если $$BM\ =\ 1$$ и $$\angle BCM\ =\ 15{}^\circ .$$

Ответ: $$\frac{2\sqrt{3}+3}{3}$$
 

Задание 12615

На гипотенузе АВ и катетах ВС и АС прямоугольного треугольника АВС отмечены точки М, N и К соответственно, причём прямая NK параллельна прямой АВ и $$BM=BN\ =\frac{1}{2}KN.$$ Точка Р -середина отрезка KN.

а) Докажите, что четырёхугольник ВСРМ - равнобедренная трапеция.

б) Найдите площадь треугольника АВС, если $$BM\ =\ 2$$ и $$\angle BCM\ =\ 30{}^\circ .$$

Ответ: $$8\sqrt{3}$$