Перейти к основному содержанию

ЕГЭ Профиль

(C4) Планиметрическая задача

Окружности и треугольники

 

Задание 10578

Окружность с центром $$O$$, вписанная в прямоугольный треугольникa $$ABC$$, касается гипотенузы $$AB$$ в точке $$M$$, а катета $$AC$$ - в точке $$N$$, $$AC<BC$$. Прямые $$MN$$ и $$CO$$ пересекаются в точке $$K$$. 

а) Докажите, что угол $$CKN$$ в два раза меньше угла $$ABC$$

б) Найдите $$BK$$, если $$BC=2\sqrt{2}$$
 

Ответ: 2
 

Задание 10618

В треугольнике АВС на стороне ВС выбрана точка М, причем $$\angle BAM=30{}^\circ $$. Прямая АМ пересекает окружность, описанную около треугольника АВС в точке N, отличной от А. Известно, что $$\angle BNC=105{}^\circ ,\ AB=2,AC=2\sqrt{6}$$.

а) Доказать, что $$BN:NC=1:\sqrt{2}$$

б) Найдите длину отрезка AN.

Ответ: 4
 

Задание 10658

В прямоугольном треугольнике АВС с прямым углом С вписана окружность с центром О, касающаяся его сторон ВС, АС и АВ в точках Р, Q, R соответственно.

Известны длины катетов: $$AC=4$$, $$BC=3$$.

а) Доказать, что $$AO\cdot BO\cdot CO=10$$
б) Найдите площадь треугольника PQR
Ответ: 1,2
 

Задание 10694

Точка $$O_1$$ - центр вписанной окружности равнобедренного треугольника АВС, а $$O_2$$ - центр вневписанной окружности, касающейся основания ВС.

а) Докажите, что расстояние от середины отрезка $$O_1O_2$$ до точки С вдвое меньше $$O_1O_2$$.

б) Известно, что радиус первой окружности в пять раз меньше радиуса второй. В каком отношении точка касания первой окружности с боковой стороной треугольника делит эту сторону?

Ответ: 1:2
 

Задание 10734

Окружность с центром О, вписанная в треугольник ABC, касается его сторон АВ, АС и ВС в точках $$C_1,B_1,A_1$$соответственно. Биссектриса угла А пересекает эту окружность в точке Q, лежащей внутри треугольника $$AB_1C_1$$

а) Докажите, что $$C_1Q$$ - биссектриса угла $$AC_1B_1$$.
б) Найдите расстояние от точки О до центра окружности, вписанной в треугольник $$AC_1B_1$$, если известно, что ВС = 15, АВ = 13, АС = 14.
Ответ: 4
Скрыть

а) Поскольку$$\ AC_1=AB_1$$, треугольник$$\ AB_1C_1$$ равнобедренный, биссектриса его угла А перпендикулярна основанию $$B_1C_1$$ и делит его пополам, значит, высота треугольника $$B_1QC_1$$ проведённая из вершины Q, является его медианой. Значит, треугольник $$B_1QC_1$$ равнобедренный, $$\angle QB_1C_1=\angle QC_1B_1$$.

Из теоремы об угле между касательной и хордой следует, что $$\angle AC_1B_1=2\angle QB_1C_1=2\angle QC_1B_1$$. Следовательно, $$C_1Q$$ - биссектриса угла $$AC_1B_1$$.

б) Поскольку Q - точка пересечения биссектрис треугольника $$AB_1C_1$$, эта точка - центр окружности, вписанной в треугольник $$AB_1C_1.$$ Значит, искомое расстояние - это длина отрезка OQ, т.е. радиус окружности, вписанной в треугольник ABC.

Пусть этот радиус равен r, а полупериметр треугольника ABC равен р. Тогда $$p=\frac{AB+AC+BC}{2}=\frac{13+14+15}{2}=21\to $$ $$\to S_{\triangle ABC}=\sqrt{21\left(21-13\right)\left(21-14\right)\left(21-15\right)}=84$$

Следовательно, $$OQ=R=\frac{S_{\triangle ABC}}{P}=\frac{84}{21}=4$$.

 

Задание 10754

Окружность с центром О, вписанная в треугольник ABC, касается его сторон АВ, АС и ВС в точках $$C_1,B_1,\ A_1$$ соответственно. Биссектриса угла А пересекает эту окружность в точке Q, лежащей внутри треугольника $$AB_1C_1$$.

а) Докажите, что $$C_1Q$$ - биссектриса угла$$\ AC_1B_1$$
б) Найдите расстояние от точки О до центра окружности, вписанной в треугольник $$AB_1C_1$$ если известно что ВС = 7, АВ = 15, АС = 20.
Ответ: 2
Скрыть

а) В треугольник ABC вписана окружность с центром в точке O. Стороны AB и AC - касательные к окружности и по теореме об отрезках касательных $$AC_1=AB_1$$ и, следовательно, треугольник$$\ AC_1B_1$$ - равнобедренный. AQ - биссектриса угла A по условию и в равнобедренном треугольнике $$AC_1B_1$$ биссектриса $$AA_2$$ (продолжение AQ) является медианой и высотой. Следовательно, $$QA_2$$ в треугольнике $$C_1QB_1$$ является также медианой и высотой, а сам треугольник $$C_1QB_1$$ - равнобедренный, так как $$\angle 1=\angle 2$$.

По теореме об угле между касательной $$AC_1$$ и хордой $$C_1B_1$$, имеем: $$\angle AC_1B_1=2\cdot \angle 1=2\cdot \angle 2$$, следовательно, $$C_1Q$$ - биссектриса угла $$AC_1B_1$$.

б) Рассмотрим треугольник $$AC_1B_1$$. Известно, что центр вписанной окружности находится в точке пересечения биссектрис углов, поэтому для $$AC_1B_1$$ центр вписанной окружности соответствует точке Q.

Найдем расстояние от точки O до точки Q, равный радиусу r вписанной окружности в треугольник ABC. Используя формулу площади треугольника ABC, можно записать $$S_{ABC}=p\cdot r$$, где p - полупериметр треугольника ABC. То есть, радиус r, равен: $$r=S_{ABC}/p$$.

Площадь треугольника ABC также можно найти по формуле Герона.

Делаем вычисления. Полупериметр треугольника ABC, равен: $$p=\frac{7+15+20}{2}=21$$, площадь треугольника ABC, равна: $$S_{ABC}=\sqrt{21\cdot \left(21-7\right)\cdot \left(21-15\right)\cdot (21-20)}=42$$ и радиус вписанной окружности $$r=\frac{42}{21}=2$$, то есть $$OQ = r = 2$$.

Задание 11002

В остроугольном треугольнике АВС провели высоты $$AH_1$$ и $$CH_2$$, затем провели луч МН, который пересекает описанную около треугольника АВС в точке К, где М - середина АС, а Н - точка пересечения высот.

А) Докажите, что $$НМ=МК$$

Б) Найдите площадь треугольника ВСК, если $$\angle ABC=60{}^\circ ;\ \angle BAC=45{}^\circ ;\ AC=1$$

Ответ: $$\frac{1}{3}$$
 

Задание 11022

Вневписанная окружность равнобедренного треугольника касается его боковой стороны.

а) Докажите, что радиус этой окружности равен высоте треугольника, опущенной на основание.
б) Известно, что радиус этой окружности в 4 раза больше радиуса вписанной окружности треугольника. В каком отношении точка касания вписанной окружности с боковой стороной треугольника делит эту сторону?
Ответ: $$\frac{1}{2}.$$
Скрыть

а) Треугольник ABC - равнобедренный ($$AB\ =\ BC$$), BH - высота, следовательно, BH - биссектриса угла ABC. Окружность с центром в точке O вписана в угол CBE, поэтому ее центр находится на биссектрисе (BO) угла CBE. Углы ABC и CBE - смежные, их сумма равна 180$${}^\circ$$, следовательно, сумма углов HBC и OBC равна 90$${}^\circ$$. Получаем, что в четырехугольнике HBON $$\angle HBO=\angle BHN=\angle ONH=90{}^\circ $$ то есть, имеем прямоугольник HBON. Его противоположные стороны равны $$BH=ON$$ и радиус окружности с центром O равен высоте треугольника ABC.

б) Пусть радиус вписанной окружности равен $$r$$. Так как радиус описанной окружности в 4 раза больше радиуса вписанной окружности, то $$BH=4r$$, а $$O_1B=4r-r=3r$$ (см. рисунок). Прямоугольник $$O_1MB$$ - прямоугольный, так как $$O_1M\bot BC$$ (BC - касательная, а O1M - радиус). Тогда по теореме Пифагора, имеем: $$MB=\sqrt{O_1B^2-O_1M^2}=\sqrt{9r^2-r^2}=2\sqrt{2}r.$$

Рассмотрим треугольники $$BO_1M$$ и $$BCH$$, которые подобны по двум углам (угол B - общий, а $$\angle O_1MB=\angle BHC=90{}^\circ $$). Следовательно, $$\frac{BM}{O_1M}=\frac{BH}{CH}$$, откуда $$CH=\frac{O_1M\cdot BH}{BM}=\frac{r\cdot 4r}{2\sqrt{2}r}=\sqrt{2}r.$$

Также $$CH=CM$$ по теореме об отрезках касательных, то есть, $$CM=\sqrt{2}r$$. Соответственно, $$\frac{CM}{BM}=\frac{\sqrt{2}r}{2\sqrt{2}r}=\frac{1}{2}.$$

 

Задание 11088

Окружность с центром О, вписанная в треугольник АВС, касается его сторон ВС, АВ и АС в точках K, L и М соответственно. Прямая КМ вторично пересекает в точке Р окружность радиуса АМ с центром А.

а) Докажите, что прямая АР параллельна прямой ВС

б) Пусть $$\angle ABC=90{}^\circ ,\ AM=3,\ CM=2,\ Q$$ - точка пересечения прямых КМ и АВ, а Т - такая точка на отрезке РQ, что $$\angle OAT=45{}^\circ .$$ Найдите QT.

Ответ: $$\frac{12\sqrt{5}}{5}$$
 

Задание 11450

Дан прямоугольный треугольник АВС с прямым углом С. На катете АС взята точка М. Окружность с центром О и диаметром СМ касается гипотенузы в точке N.

А) Докажите, что прямые MN и ВО параллельны
Б) Найдите площадь четырехугольника BOMN, если CN=8, AM:MC=1:3.
Ответ: 28
 

Задание 11732

Три точки А, В и С разбивают окружность на три дуги. Каждая из дуг разбивается на три равные части так, что на окружности последовательно стоят точки А, А1, А2, В, В1, В2, С, С1, С2.

А) Докажите, что точки пересечения прямых А1В2, В1С2 и С1А2образуют равносторонний треугольник

Б) Найдите стороны этого треугольника, если АС=1, ВС=2, АВ= 3

Ответ: $$\frac{1}{\sqrt{3}}$$
 

Задание 11751

В остроугольном треугольнике ABC высоты BB1и CC1пересекаются в точке H.

а) Докажите, что $$\angle NAH=\angle BB_{1}C_{1}$$ 
б) Найдите расстояние от цента описанной окружности треугольника ABC до стороны BC, если B1C1=12 и $$\angle BAC=60^{\circ}$$.
Ответ: $$4\sqrt{3}$$
 

Задание 11770

В треугольнике ABC AB=3, $$\angle ABC=\arcsin \frac{3}{5}$$. Хорда KN окружности, описанной около треугольника ABC, пересекает отрезки AC и BC в точках M и L соответственно. Известно, что $$\angle ABC=\angle CML$$, площадь четырёхугольника ABLM равна 2, LM=1.

а) Докажите, что треугольник KNC равнобедренный.
б) Найдите площадь треугольника KNC.
Ответ: $$\frac{3}{4}$$
 

Задание 12395

Точка О - центр вписанной в треугольник АВС окружности. Прямая ВО вторично пересекает описанную около этого треугольника окружность в точке Р.

а) Докажите, что $$\angle POA\ =\ \angle PAO.$$
б) Найдите площадь треугольника АРО, если радиус описанной около треугольника АВС окружности равен 6, $$\angle BAC\ =\ 75{}^\circ ,\ \angle ABC\ =\ 60{}^\circ .$$
Ответ: $$9\sqrt{2}$$
 

Задание 12415

Точка О - центр вписанной в треугольник АВС окружности. Прямая ВО вторично пересекает описанную около этого треугольника окружность в точке Е.

а) Докажите, что $$\angle EOC=\ \angle ECO.$$
б) Найдите площадь треугольника АСЕ, если радиус описанной около треугольника АВС окружности равен $$6\sqrt{3},\ \angle ABC\ =\ 60{}^\circ .$$
Ответ: $$27\sqrt{3}$$