Перейти к основному содержанию

ЕГЭ Профиль

Производная и первообразная

Геометрический смысл производной, касательная

 
Аналоги к этому заданию:

Задание 11460

На рисунке изображен график функции у = f(x) и отмечены точки – 3, – 2, – 1, 1, 2, 3. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.

Ответ:
 
Аналоги к этому заданию:

Задание 11413

Прямая, заданная уравнением $$y=bx+1$$ при некотором значении b является касательной к графику функции $$f(x)=\frac{1}{x+1}$$. Найдите b

Ответ:
Аналоги к этому заданию:

Задание 11369

На рисунке изображён график функции у=f(x). Прямая, проходящая через начало координат, касается графика этой функции в точке с абсциссой 5. Найдите значение производной функции в точке х0=5

Ответ:
 
Аналоги к этому заданию:

Задание 11268

Найдите угловой коэффициент касательной к графику функции $$f(x)=2e^{5x-2}+5x^{3}$$ в точке с абсциссой $$x_{0}=0,4$$.

Ответ: 12,4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 10993

На графике функции $$у\ =\ f\ (x)$$ отмечены четыре точки с абсциссами $$-3,\ -1,\ 1,\ 3.$$ По данному графику определите, в какой из этих точек значение производной $$f'(x)$$ будет наибольшим. (В ответе укажите абсциссу этой точки).

Ответ: -3
Скрыть $$f'\left(x\right)={\tan \alpha \ }$$, где $$\alpha$$ - угол м/у $$Ox$$ и касательной. При этом при $$\alpha \to 90{}^\circ \left(\alpha <90{}^\circ \right),\ {\tan \alpha \ }\to max\to -3$$
 
Аналоги к этому заданию:

Задание 10814

Функция $$f(x)$$ определена при всех действительных $$x$$. На рисунке изображен график $$f'(x)$$ её производной. Найдите значение выражения $$f\left(3\right)-f(1)$$.

Ответ: 6
Скрыть $$f'\left(x\right)=2x-1\to f\left(x\right)=x^2-x+C$$. Тогда $$f\left(3\right)-f\left(1\right)=9-3+C-1+1-C=6$$.
 
Аналоги к этому заданию:

Задание 10521

На рисунке изображён график функции у = f(x) и одиннадцать точек на оси абсцисс: x1, х2, х3, х4, x5, х6, х7, x8, x9, x10, х11. В скольких из этих точек производная функции f(x) отрицательна?

Ответ: 6
Скрыть

Производная принимает отрицательное значение в точках, в окрестности которых функция f(x) убывает. Выберем такие точки функции, имеем: x1, х2, x3, x5, x10, x11 , то есть в 6 точках

 
Аналоги к этому заданию:

Задание 10434

На рисунке изображен график производной функции $$y=f(x)$$ на отрезке [-4;4]. Определите количество касательных к графику функции $$y=f(x)$$, угловой коэффициент которых равен ‐2.

Ответ: 2
 
Аналоги к этому заданию:

Задание 10384

Под каким углом пересекаются касательные к графикам функций $$y=\cos x$$ в точке $$x_{0}=\frac{3\pi}{2}$$ и $$y=\sqrt{3}\cos x$$ в точке $$x_{0}=\frac{\pi}{2}$$ ? Ответ запишите в градусах.

Ответ: 15
 
Аналоги к этому заданию:

Задание 10254

На рисунке изображен график производной функции $$y=f(x)$$, заданной на отрезке [‒ 2; 6]. Найдите число точек на этом отрезке, в которых касательная к графику функции $$f(x)$$ параллельна биссектрисе первой четверти.

Ответ: 4
 
Аналоги к этому заданию:

Задание 9894

На рисунке изображен график функции y=f(x). На оси абсцисс отмечены точки ‐2;2;3;4. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.

Ответ:
 
Аналоги к этому заданию:

Задание 9794

На рисунке изображены график функции $$y=f(x)$$ и касательная к нему в точке с абсциссой $$x_{0}$$. Найдите значение производной функции $$f(x)$$ в точке $$x_{0}$$.

Ответ: 1,6
 
Аналоги к этому заданию:

Задание 9673

Функция у = f (x) определена на промежутке [‐4;4]. На рисунке приведен график её производной. Найдите количество точек графика функции у=f(x), касательная в которых образует с положительным направлением оси Ох угол $$50^{\circ}$$ .

Ответ: 4
 
Аналоги к этому заданию:

Задание 9626

Функция задана графиком. Какой из представленных ниже графиков является графиком ее производной? В ответе укажите его номер.

Ответ: 3
 
Аналоги к этому заданию:

Задание 9521

Прямая $$y=-5x+6$$ является касательной к графику функции $$28x^2+23x+c$$. Найдите с.

Ответ: 13
 
Аналоги к этому заданию:

Задание 9153

На рисунке изображены график функции $$y=f(x)$$ и касательная к нему в точке с абсциссой х0. Найдите значение производной функции $$f(x)$$ в точке х0.

Ответ:
 
Аналоги к этому заданию:

Задание 9141

Прямая $$y=5-x$$ является касательной к графику функции $$y=ax^{2}+5x+3$$. Найдите a

Ответ: -4,5
 
Аналоги к этому заданию:

Задание 9037

Функция задана графиком, изображенном на рисунке 1. Один из графиков, изображенных на рисунке 2 является графиком ее производной. Какой это график? В ответе укажите его номер.

Ответ: 2
Аналоги к этому заданию:

Задание 8791

Прямая у=6х+7 параллельна касательной к графику функции у=х2-5х+6. Найдите абсциссу точки касания.

Ответ: 5,5
Аналоги к этому заданию:

Задание 8772

Прямая $$y=8x+11$$ параллельна касательной к графику функции $$y=x^{2}+7x-7$$. Найдите абсциссу точки касания.

Ответ: 0,5
 
Аналоги к этому заданию:

Задание 8261

Функция $$y=f(x)$$ определена на интервале (‐5;6). На рисунке изображен график функции $$y=f(x)$$. Найдите среди точек $$x_{1}, x_{2},...,x_{7}$$ те точки, в которых производная функции f(x) равна нулю. В ответ запишите количество найденных точек.

Ответ: 3
Скрыть

Производная равна 0 на графике функции там, где находятся точки экстремума (максим и минимум): x2, x5, x- всего три точки. 

 
Аналоги к этому заданию:

Задание 8230

На рисунке изображен график $$y=f'(x)$$ ‐ производной функции $$f(x)$$, определенной на интервале (-12;9). Найдите количество точек максимума функции $$f(x)$$, принадлежащих отрезку [-9;8]

Ответ: 1
Скрыть Так как дан график производной, то точки экстремума находятся там, где график пересекает ось Ох, при этом максимум, если пересекает с положительной полуплоскости по у на отрицательную, то есть в точке х=-8. На данном графике точка максимума единственная
Аналоги к этому заданию:

Задание 3615

Пря­мая $$y=-5x+8$$ яв­ля­ет­ся ка­са­тель­ной к гра­фи­ку функ­ции $$28x^{2}+bx+15$$. Най­ди­те $$b$$, учи­ты­вая, что абс­цис­са точки ка­са­ния боль­ше 0.

Ответ: -33
Аналоги к этому заданию:

Задание 3614

Прямая $$y=3x+4$$ является касательной к графику функции $$3x^{2}-3x+c$$. Найдите c.

Ответ: 7
Аналоги к этому заданию:

Задание 3613

Прямая $$y=3x+1$$ является касательной к графику функции $$ax^{2}+2x+3$$. Найдите а.

Ответ: 0,125
Аналоги к этому заданию:

Задание 3612

Пря­мая $$y=-4x-11$$ яв­ля­ет­ся ка­са­тель­ной к гра­фи­ку функ­ции $$y=x^{3}+7x^{2}+7x-6$$. Най­ди­те абс­цис­су точки ка­са­ния.

Ответ: -1
Аналоги к этому заданию:

Задание 3611

Пря­мая $$y=7x-5$$ па­рал­лель­на ка­са­тель­ной к гра­фи­ку функ­ции $$y=x^{2}+6x-8$$. Най­ди­те абс­цис­су точки ка­са­ния.

Ответ: 0,5
Аналоги к этому заданию:

Задание 3610

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции $$f(x)$$. Най­ди­те абс­цис­су точки, в ко­то­рой ка­са­тель­ная к гра­фи­ку $$y=f(x)$$ па­рал­лель­на оси абс­цисс или сов­па­да­ет с ней.

Ответ: -3
Аналоги к этому заданию:

Задание 3609

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции $$f(x)$$. Най­ди­те абс­цис­су точки, в ко­то­рой ка­са­тель­ная к гра­фи­ку $$y=f(x)$$ па­рал­лель­на пря­мой $$y=2x-2$$ или сов­па­да­ет с ней.

Ответ: 5
Аналоги к этому заданию:

Задание 3608

На ри­сун­ке изоб­ра­жен гра­фик функ­ции $$y=f(x)$$ и от­ме­че­ны точки −2, −1, 1, 2. В какой из этих точек зна­че­ние про­из­вод­ной наи­боль­шее? В от­ве­те ука­жи­те эту точку.

Ответ: -2
Аналоги к этому заданию:

Задание 3607

На ри­сун­ке изоб­ражён гра­фик функ­ции $$y=f(x)$$ и две­на­дцать точек на оси абс­цисс: $$x_{1}$$, $$x_{2}$$, $$x_{3}$$, ..., $$x_{12}$$. В сколь­ких из этих точек про­из­вод­ная функ­ции $$f(x)$$ от­ри­ца­тель­на?

Ответ: 7
Аналоги к этому заданию:

Задание 3606

На ри­сун­ке изоб­ражён гра­фик функ­ции $$fy=(x)$$ и во­семь точек на оси абс­цисс: $$x_{1}$$, $$x_{2}$$, $$x_{3}$$, ..., $$x_{8}$$. В сколь­ких из этих точек про­из­вод­ная функ­ции $$f(x)$$ по­ло­жи­тель­на?

Ответ: 4
Аналоги к этому заданию:

Задание 3605

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y=f(x). Пря­мая, про­хо­дя­щая через на­ча­ло ко­ор­ди­нат, ка­са­ет­ся гра­фи­ка этой функ­ции в точке с абс­цис­сой 8. Най­ди­те f'(8).

Ответ: 1,25
Аналоги к этому заданию:

Задание 3604

На ри­сун­ке изоб­ражён гра­фик функ­ции y=f(x) и ка­са­тель­ная к нему в точке с абс­цис­сой x0. Най­ди­те зна­че­ние про­из­вод­ной функ­ции f(x) в точке x0.

Ответ: -0,25
Аналоги к этому заданию:

Задание 3603

На ри­сун­ке изоб­ражён гра­фик функ­ции y=f(x) и ка­са­тель­ная к нему в точке с абс­цис­сой x0. Най­ди­те зна­че­ние про­из­вод­ной функ­ции f(x) в точке x0.

Ответ: -2
Аналоги к этому заданию:

Задание 3602

На ри­сун­ке изоб­ражён гра­фик функ­ции y=f(x) и ка­са­тель­ная к нему в точке с абс­цис­сой x0. Най­ди­те зна­че­ние про­из­вод­ной функ­ции f(x) в точке x0.

Ответ: 0,25
Аналоги к этому заданию:

Задание 3601

На ри­сун­ке изоб­ра­же­ны гра­фик функ­ции y = f(x) и ка­са­тель­ная к нему в точке с абс­цис­сой x0. Най­ди­те зна­че­ние про­из­вод­ной функ­ции f(x) в точке x0.

Ответ: -0,5
Аналоги к этому заданию:

Задание 3600

На ри­сун­ке изоб­ра­же­ны гра­фик функ­ции y = f(x) и ка­са­тель­ная к нему в точке с абс­цис­сой x0. Най­ди­те зна­че­ние про­из­вод­ной функ­ции f(x) в точке x0.

Ответ: -0,25
Аналоги к этому заданию:

Задание 3599

На ри­сун­ке изоб­ражён гра­фик функ­ции y = f(x) и от­ме­че­ны семь точек на оси абс­цисс: x1x2x3x4x5x6x7. В сколь­ких из этих точек про­из­вод­ная функ­ции f(x) от­ри­ца­тель­на?

Ответ: 3
Аналоги к этому заданию:

Задание 3598

Ма­те­ри­аль­ная точка M на­чи­на­ет дви­же­ние из точки A и дви­жет­ся по пря­мой на про­тя­же­нии 12 се­кунд. Гра­фик по­ка­зы­ва­ет, как ме­ня­лось рас­сто­я­ние от точки A до точки M со вре­ме­нем. На оси абс­цисс от­кла­ды­ва­ет­ся время t в се­кун­дах, на оси ор­ди­нат — рас­сто­я­ние s.

Опре­де­ли­те, сколь­ко раз за время дви­же­ния ско­рость точки M об­ра­ща­лась в ноль (на­ча­ло и конец дви­же­ния не учи­ты­вай­те).

Ответ: 6
Аналоги к этому заданию:

Задание 3597

На ри­сун­ке изоб­ражён гра­фик функ­ции y=f(x) и ка­са­тель­ная к нему в точке с абс­цис­сой x0. Най­ди­те зна­че­ние про­из­вод­ной функ­ции f(x) в точке x0.

Ответ: 2