Перейти к основному содержанию

ЕГЭ Профиль

Планиметрия: задачи, связанные с углами

Касательная, хорда, секущая

 
Аналоги к этому заданию:

Задание 10433

Радиус окружности с центром в точке О равен 13 см, длина хорды АВ равна 24 см. Найдите расстояние от хорды АВ до параллельной ей касательной k.

Ответ: 18
 
Аналоги к этому заданию:

Задание 10126

Найдите длину общей касательной двух окружностей, радиусы которых равны 4 и 1, касающихся внешним образом

Ответ: 4
 
Аналоги к этому заданию:

Задание 10107

На окружности в последовательном порядке заданы точки B, C, D. Касательная к окружности, проведенная через точку С и продолжение хорды DB пересекаются в точке К. Найдите хорду DC, если $$\angle DKC=60^{\circ}$$; $$KB:BD=4:5$$, KC=12. В ответе укажите значение $$DC\cdot \sqrt{7}$$

Ответ: 42
 
Аналоги к этому заданию:

Задание 9868

На окружности отмечены точки А и В так, что меньшая дуга АВ равна 720. Прямая ВС касается окружности в точке В так, что угол АВС острый. Найдите угол АВС. Ответ дайте в градусах.

Ответ: 36
 
Аналоги к этому заданию:

Задание 9375

Угол АСО равен 62°. Его сторона СА касается окружности с центром в точке О. Отрезок СО пересекает окружность в точке В (см. рис.). Найдите градусную меру дуги АВ окружности, заключённой внутри этого угла. Ответ дайте в градусах.

Ответ:
 
Аналоги к этому заданию:

Задание 9355

Найдите угол АСО, если его сторона СА касается окружности с центром О, отрезок СО пересекает окружность в точке В (см. рис.), а дуга АВ окружности, заключённая внутри этого угла, равна 17°. Ответ дайте в градусах.

Ответ: 73
Аналоги к этому заданию:

Задание 6656

К окружности, вписанной в треугольник АВС, проведены три касательные. Периметры отсеченных треугольников равны 5, 7 и 13. Найдите периметр треугольника АВС.

Ответ: 25
Скрыть

По свойству касательных : $$MX=MB_{1}$$; $$XN=NC_{1}$$; $$C_{1}L=LY$$; $$YK=KA_{1}$$; $$A_{1}R=RZ$$; $$ZH=HB_{1}$$

Получим , что $$P_{AMN}+P_{LBK}+P{CNK}=P_{ABC}$$

$$P_{ABC}=5+7+13=25$$

Аналоги к этому заданию:

Задание 5710

Касательные в точках A и B к окружности с центром O пересекаются под углом 76°. Найдите угол ABO. Ответ дайте в градусах.

Ответ:
Аналоги к этому заданию:

Задание 5709

Окружность с цен­тром на сто­ро­не AC тре­уголь­ни­ка ABC про­хо­дит через вер­ши­ну C и ка­са­ет­ся пря­мой AB в точке B. Най­ди­те AC, если диа­метр окруж­но­сти равен 7,5, а AB = 2.

Ответ:
Аналоги к этому заданию:

Задание 5708

Из точки А про­ве­де­ны две ка­са­тель­ные к окруж­но­сти с цен­тром в точке О. Най­ди­те ра­ди­ус окружности, если угол между ка­са­тель­ны­ми равен 60°, а рас­сто­я­ние от точки А до точки Оравно 8.

Ответ:
Аналоги к этому заданию:

Задание 5707

Окружность радиуса 39 впи­са­на в квадрат. Най­ди­те пло­щадь квадрата.

Ответ:
Аналоги к этому заданию:

Задание 5706

Сторона AC тре­уголь­ни­ка ABC про­хо­дит через центр опи­сан­ной около него окружности. Най­ди­те ∠C , если ∠A = 44°. Ответ дайте в градусах.

Ответ:
Аналоги к этому заданию:

Задание 5704

На от­рез­ке AB вы­бра­на точка C так, что AC = 75 и BC = 10. По­стро­е­на окружность с цен­тром A, про­хо­дя­щая через C. Най­ди­те длину от­рез­ка касательной, проведённой из точки B к этой окружности.

Ответ:
Аналоги к этому заданию:

Задание 5703

Отрезок AB = 40 ка­са­ет­ся окруж­но­сти ра­ди­у­са 75 с цен­тром O в точке B. Окруж­ность пе­ре­се­ка­ет от­ре­зок AO в точке D. Най­ди­те AD.

Ответ:
Аналоги к этому заданию:

Задание 5702

Найдите пло­щадь кругового сектора, если длина огра­ни­чи­ва­ю­щей его дуги равна 6π, а угол сек­то­ра равен 120°. В от­ве­те укажите площадь, деленную на π.

Ответ:
Аналоги к этому заданию:

Задание 5701

Найдите пло­щадь кругового сектора, если ра­ди­ус круга равен 3, а угол сек­то­ра равен 120°. В от­ве­те укажите площадь, деленную на π.

Ответ:
Аналоги к этому заданию:

Задание 5700

Радиус круга равен 1. Най­ди­те его площадь, деленную на π.

Ответ:
Аналоги к этому заданию:

Задание 3521

Угол ACO равен 24°. Его сто­ро­на CA ка­са­ет­ся окруж­но­сти. Най­ди­те гра­дус­ную ве­ли­чи­ну боль­шей дуги AD окруж­но­сти, за­клю­чен­ной внут­ри этого угла. Ответ дайте в гра­ду­сах.

Ответ: 114
Аналоги к этому заданию:

Задание 3520

Най­ди­те угол ACO, если его сто­ро­на CA ка­са­ет­ся окруж­но­сти, O — центр окруж­но­сти, а боль­шая дуга AD окруж­но­сти, за­клю­чен­ная внут­ри этого угла, равна 116°. Ответ дайте в гра­ду­сах.

Ответ: 26
Аналоги к этому заданию:

Задание 3519

Угол ACO равен 28°, где O — центр окруж­но­сти. Его сто­ро­на CA ка­са­ет­ся окруж­но­сти. Най­ди­те ве­ли­чи­ну мень­шей дуги AB окруж­но­сти, за­клю­чен­ной внут­ри этого угла. Ответ дайте в гра­ду­сах.

Ответ: 62
Аналоги к этому заданию:

Задание 3518

Най­ди­те угол ACO, если его сто­ро­на CA ка­са­ет­ся окруж­но­сти, дуга АВ — равна 64°. Ответ дайте в гра­ду­сах.

Ответ: 26
Аналоги к этому заданию:

Задание 3517

Ка­са­тель­ные CA и CB к окруж­но­сти об­ра­зу­ют угол ACB, рав­ный 122°. Най­ди­те ве­ли­чи­ну мень­шей дуги AB, стя­ги­ва­е­мой точ­ка­ми ка­са­ния. Ответ дайте в гра­ду­сах.

Ответ: 58
Аналоги к этому заданию:

Задание 3516

Через концы AB дуги окруж­но­сти в 62° про­ве­де­ны ка­са­тель­ные AC и BC. Най­ди­те угол ACB. Ответ дайте в гра­ду­сах.

Ответ: 118
Аналоги к этому заданию:

Задание 3515

Угол между хор­дой AB и ка­са­тель­ной BC к окруж­но­сти равен 32°. Най­ди­те ве­ли­чи­ну мень­шей дуги, стя­ги­ва­е­мой хор­дой AB. Ответ дайте в гра­ду­сах.

Ответ: 64
Аналоги к этому заданию:

Задание 3514

Хорда AB стя­ги­ва­ет дугу окруж­но­сти в 92°. Най­ди­те угол ABC между этой хор­дой и ка­са­тель­ной к окруж­но­сти, про­ве­ден­ной через точку B. Ответ дайте в гра­ду­сах.

Ответ: 46
Аналоги к этому заданию:

Задание 3513

Хорда AB делит окруж­ность на две части, гра­дус­ные ве­ли­чи­ны ко­то­рых от­но­сят­ся как 5:7. Под каким углом видна эта хорда из точки C, при­над­ле­жа­щей мень­шей дуге окруж­но­сти? Ответ дайте в гра­ду­сах.

Ответ: 105
Аналоги к этому заданию:

Задание 3512

Най­ди­те хорду, на ко­то­рую опи­ра­ет­ся угол 120°, впи­сан­ный в окруж­ность ра­ди­у­са $$\sqrt{3}$$.

Ответ: 3
Аналоги к этому заданию:

Задание 3511

Най­ди­те хорду, на ко­то­рую опи­ра­ет­ся угол 30°, впи­сан­ный в окруж­ность ра­ди­у­са 3.

Ответ: 3
Аналоги к этому заданию:

Задание 1918

На окруж­но­сти с цен­тром O от­ме­че­ны точки A и B так, что ∠AOB = 66°. Длина мень­шей дуги AB равна 99. Най­ди­те длину боль­шей дуги.

Ответ: 441
Скрыть

Если острый угол AOB составляет 66 градуов, то развернутый составляет $$360-66=294^{\circ}$$

Пусть длина большей дуги равна х, тогда:

$$66^{\circ}- 99$$

$$294^{\circ}- x$$

$$x=\frac{294*99}{66}=441$$

Аналоги к этому заданию:

Задание 1917

От­рез­ки AB и CD яв­ля­ют­ся хор­да­ми окруж­но­сти. Най­ди­те рас­сто­я­ние от цен­тра окруж­но­сти до хорды CD, если AB = 18, CD = 24, а рас­сто­я­ние от цен­тра окруж­но­сти до хорды AB равно 12.

Ответ: 9
Скрыть

OE перпендикулряно AB, следовательно, треугольники AOE и OEB равны (так как OA=OB-радиусы) по катету и гипотенузе. Тогда AE=EB=0,5AB=9.
По теореме Пифагора из треугольника OEB: $$OB=\sqrt{12^{2}+9^{2}}=15$$, следовательно, OD=15
Из треугольника OFD по теореме Пифагора: $$OF=\sqrt{OD^{2}-FD^{2}}$$, FD=0,5CD=12. Тогда: $$OF=\sqrt{15^{2}-12^{2}}=9$$
Аналоги к этому заданию:

Задание 1915

Пря­мая ка­са­ет­ся окруж­но­сти в точке K. Точка O — центр окруж­но­сти. Хорда KM об­ра­зу­ет с ка­са­тель­ной угол, рав­ный 83°. Най­ди­те ве­ли­чи­ну угла OMK. Ответ дайте в гра­ду­сах.

Ответ: 7
Скрыть

Треугольник OMK - равнобедренный (OM=OK - радиусы), тогда $$\angle OMK=\angle OKM$$

По свойству касательной и радиуса OK и касательная - перпендикулярны, тогда $$\angle OKM=90-83=7^{\circ}$$, тогда и угол OMK те же 7 градусов

Аналоги к этому заданию:

Задание 1914

Вер­ши­ны тре­уголь­ни­ка делят опи­сан­ную около него окруж­ность на три дуги, длины ко­то­рых от­но­сят­ся как 3:4:11. Най­ди­те ра­ди­ус окруж­но­сти, если мень­шая из сто­рон равна 14.

Ответ: 14
Скрыть

Пусть меньший угол K, тогда по свойству треугольника меньшая сторона AM. Углы треугольника для окружности являются вписанными, следовательно, равны половинам дуг, на которые опираются, а значит и относятся так же , как и дуги.
Пусть угол К равен 3х, тогда M=4x и A=11x. По свойству углов треугольника: $$3x+4x+11x=180\Leftrightarrow$$$$x=10$$, тогда угол К составляет 30 градусов, а меньшая дуга MA составляет 60 градусов. 
Угол MOA является центральным, следовательно $$\angle MOA=\smile MA=60^{\circ}$$, тогда треугольник MOA не только равнобедренный (OM=OA - радиусы), но и равносторонний, следовательно, MA=14
Аналоги к этому заданию:

Задание 1911

К окруж­но­сти с цен­тром в точке О про­ве­де­ны ка­са­тель­ная AB и се­ку­щая AO. Най­ди­те ра­ди­ус окруж­но­сти, если AB = 12 см, AO = 13 см.

Ответ: 5
Скрыть

   1) По свойству радиуса и касательной $$OB\perp AB$$, тогда треугольник OAB - прямоугольный

   2) По теореме Пифагора $$OB=\sqrt{13^{2}-12^{2}}=5$$

Аналоги к этому заданию:

Задание 1910

Най­ди­те ве­ли­чи­ну (в гра­ду­сах) впи­сан­но­го угла α, опи­ра­ю­ще­го­ся на хорду  AB, рав­ную ра­ди­у­су окруж­но­сти.

Ответ: 30
Скрыть

   1) Треугольник OAB - равносторонний, тогда $$\angle AOB = 60^{\circ}=\smile AB$$

   2) $$\angle ADB=\angle \alpha=\frac{1}{2}\smile AB=30^{\circ}$$ (по свойству вписанного угла)

Аналоги к этому заданию:

Задание 1909

Ра­ди­ус OB окруж­но­сти с цен­тром в точке O пе­ре­се­ка­ет хорду AC в точке D и пер­пен­ди­ку­ля­рен ей. Най­ди­те длину хорды AC, если BD = 1 см, а ра­ди­ус окруж­но­сти равен 5 см.

Ответ: 6
Скрыть

   1) $$OD=AB-BD=4$$

   2) Треугольник OAD - прямоугольный, тогда по теореме Пифагора: $$AD=\sqrt{5^{2}-4^{2}}=3$$

   3) OA=AC, OD - общая, тогда прямоугольные треугольники AOD и ODC равны, следовательно, AD=DC=3, и AC=6