Перейти к основному содержанию

ЕГЭ Профиль

Планиметрия: задачи, связанные с углами

Параллелограммы

 
Аналоги к этому заданию:

Задание 9653

Площадь параллелограмма ABCD равна 28. Точка Е - середина стороны AD. Найдите площадь трапеции BCDE.

Ответ: 21
 
Аналоги к этому заданию:

Задание 8673

В параллелограмме ABCD на диагонали АС взяты точки К и L так, что $$AK=\frac{1}{3}AC$$, $$CL=\frac{2}{5}AC$$. Найдите площадь четырехугольника BLDK, если площадь параллелограмма ABCD равна 45.

Ответ: 12
 
Аналоги к этому заданию:

Задание 8335

На рисунке представлена схема жёсткого диска. Жёсткий диск (прямоугольник ABCD) имеет в качестве носителя информации один магнитный диск (круг с центром в точке O). Расстояние от прямой BC до точки O равно 4 дюйма, а длина BC равна 3,5 дюйма. Найдите площадь жёсткого диска (прямоугольника ABCD) в квадратных дюймах.

Ответ: 20,125
 
Аналоги к этому заданию:

Задание 8317

На стороне CD параллелограмма ABCD выбрана точка E. Найдите площадь параллелограмма, если площадь треугольника AEB равна 34.

Ответ: 68
Аналоги к этому заданию:

Задание 5690

Высота BH ромба ABCD делит его сторону AD на отрезки AH = 44 и HD = 11. Найдите площадь ромба.

Ответ:
Аналоги к этому заданию:

Задание 5689

Найдите ве­ли­чи­ну остро­го угла па­рал­ле­ло­грам­ма ABCD, если бис­сек­три­са угла A об­ра­зу­ет со сто­ро­ной BC угол, рав­ный 15°. Ответ дайте в градусах.

Ответ:
Аналоги к этому заданию:

Задание 5688

На про­дол­же­нии сто­ро­ны AD па­рал­ле­ло­грам­ма ABCD за точ­кой D от­ме­че­на точка E так, что DC = DE. Най­ди­те боль­ший угол па­рал­ле­ло­грам­ма ABCD, если ∠DEC = 53°. Ответ дайте в градусах.

Ответ:
Аналоги к этому заданию:

Задание 1996

Диа­го­наль AC па­рал­ле­ло­грам­ма ABCD об­ра­зу­ет с его сто­ро­на­ми углы, рав­ные 30° и 45° . Най­ди­те боль­ший угол па­рал­ле­ло­грам­ма. Ответ дайте в гра­ду­сах.

Ответ: 105
Скрыть

  1. Пусть $$\angle BAC=30^{\circ} ; \angle CAD=45^{\circ}$$, тогда $$\angle A=30+45=75^{\circ}$$
  2. По свойству углов параллелограмма: $$\angle B=180-75=105^{\circ}$$ - это и есть больший угол
Аналоги к этому заданию:

Задание 1995

Вы­со­та BH ромба ABCD делит его сто­ро­ну AD на от­рез­ки AH = 5 и HD = 8. Най­ди­те пло­щадь ромба.

Ответ: 156
Скрыть

  1. $$AD=AH+HD=5+8=13$$, тогда по свойству ромба $$AB=13$$
  2. Из прямоугольного треугольника ABH: $$BH=\sqrt{13^{2}-5^{2}}=12$$
  3. Из формулы площади ромба $$S=12*13=156$$
Аналоги к этому заданию:

Задание 1994

Вы­со­та BH па­рал­ле­ло­грам­ма ABCD делит его сто­ро­ну AD на от­рез­ки AH = 1 и HD = 28. Диа­го­наль па­рал­ле­ло­грам­ма BD равна 53. Най­ди­те пло­щадь па­рал­ле­ло­грам­ма.

Ответ: 1305
Скрыть

  1. Из прямоугольного треуголььника BDH : $$BH=\sqrt{53^{2}-28^{2}}=45$$
  2. $$AD=AH+AD=29$$, тогда площадь параллелограмма $$S=45*29=1305$$
Аналоги к этому заданию:

Задание 1993

Сто­ро­на ромба равна 50, а диа­го­наль равна 80. Най­ди­те пло­щадь ромба.

Ответ: 2400
Скрыть

  1. Пусть BD=80, тогда по свойству диагоналей ромба: $$ED=\frac{1}{2}BD=40$$
  2. Из прямоугольного треугольника EAD: $$EA=\sqrt{50^{2}-40^{2}}=30$$, тогда AC=60
  3. Из формулы площади ромба: $$S=\frac{1}{2}*80*60=2400$$
Аналоги к этому заданию:

Задание 1992

Сто­ро­на ромба равна 9, а рас­сто­я­ние от цен­тра ромба до неё равно 1. Най­ди­те пло­щадь ромба.

Ответ: 18
Скрыть

  1. Из треугольника AED: $$S_{AED}=\frac{1}{2}*1*9=4,5$$
  2. Ромб состоит из четырех равных прямоугольных треугольников, образованных диагоналями ромба, тогда $$S_{ABCD}=4S_{AED}=18$$
Аналоги к этому заданию:

Задание 1991

Най­ди­те пло­щадь ромба, если его диа­го­на­ли равны 14 и 6.

Ответ: 42
Скрыть

Из формулы площади ромба: $$S=\frac{1}{2}*14*6=42$$

Аналоги к этому заданию:

Задание 1990

Пло­щадь па­рал­ле­ло­грам­ма ABCD равна 56. Точка E — се­ре­ди­на сто­ро­ны CD. Най­ди­те пло­щадь тра­пе­ции AECB.

Ответ: 42
Скрыть

  1. Найдем площадь треугольника AED: $$S_{AED}=\frac{1}{2}ED*h=\frac{1}{4}CD*h=\frac{1}{4}S_{ABCD}$$, где h - высота параллелограмма
  2. Тогда $$S_{AECB}=\frac{3}{4}S_{ABCD}=42$$
Аналоги к этому заданию:

Задание 1989

В ромбе сто­ро­на равна 10, одна из диа­го­на­лей — $$5(\sqrt{6}-\sqrt{2})$$, а угол, ле­жа­щий на­про­тив этой диа­го­на­ли, равен 30°. Най­ди­те пло­щадь ромба.

Ответ: 50
Скрыть

Пусть угол D равен 30 градусам, тогда из формулы площади ромба: $$S=10*10*\sin D=50$$

Аналоги к этому заданию:

Задание 1988

Одна из сто­рон па­рал­ле­ло­грам­ма равна 12, дру­гая равна 5, а один из углов — 45°. Най­ди­те пло­щадь па­рал­ле­ло­грам­ма, делённую на $$\sqrt{2}$$.

Ответ: 30
Скрыть

Из формулы площади параллелограмма: $$S=12*5*\sin 45=30\sqrt{2}$$. В ответе необходимо найти указать ответ, деленный на $$\sqrt{2}$$, то есть 30

Аналоги к этому заданию:

Задание 1987

Одна из сто­рон па­рал­ле­ло­грам­ма равна 12, а опу­щен­ная на нее вы­со­та равна 10. Най­ди­те пло­щадь па­рал­ле­ло­грам­ма.

Ответ: 120
Скрыть

Из формулы площади параллелограмма: $$S=12*10=120$$

Аналоги к этому заданию:

Задание 1986

Пе­ри­метр ромба равен 24, а синус од­но­го из углов равен $$\frac{1}{3}$$. Най­ди­те пло­щадь ромба.

Ответ: 12
Скрыть
  1. Пусть a - сторона ромба, тогда $$a=\frac{24}{4}=6$$
  2. Найдем площадь ромба: $$S=6*6*\frac{1}{3}=12$$
Аналоги к этому заданию:

Задание 1985

Пе­ри­метр ромба равен 40, а один из углов равен 30°. Най­ди­те пло­щадь ромба.

Ответ: 50
Скрыть
  1. Пусть a - сторона ромба, тогда $$a=\frac{40}{4}=10$$
  2. Найдем площадь ромба: $$S=10*10*\sin 30^{\circ}=50$$
Аналоги к этому заданию:

Задание 1945

На сто­ро­не BC пря­мо­уголь­ни­ка ABCD, у ко­то­ро­го AB = 12 и AD = 17, от­ме­че­на точка E так, что ∠EAB = 45°. Най­ди­те ED.

Ответ: 13
Скрыть

1) $$\angle EAB=45^{\circ}$$ и $$\angle B=90^{\circ}$$, тогда $$\angle AEB=45^{\circ}$$ (по сумме углов треугольника), следовательно, AEB - равнобедренный, и AB=BE=12

2) EC=BC-BE=17-12=5, DC=AB=12, тогда по теоереме Пифагора из треугольника DCE: $$ED=\sqrt{12^{2}+5^{2}}=13$$ 

Аналоги к этому заданию:

Задание 1944

В пря­мо­уголь­ни­ке одна сто­ро­на равна 96, а диа­го­наль равна 100. Най­ди­те пло­щадь пря­мо­уголь­ни­ка.

Ответ: 2688
Скрыть

  1) Из треугольника ABC по теореме Пифагора: $$AB=\sqrt{100^{2}-96^{2}}=28$$

  2) Из формулы площади прямоугольника: $$S=96*28=2688$$

Аналоги к этому заданию:

Задание 1943

Най­ди­те пло­щадь пря­мо­уголь­ни­ка, если его пе­ри­метр равен 60, а от­но­ше­ние со­сед­них сто­рон равно 4:11.

Ответ: 176
Скрыть
  1. Пусть меньшая сторона 4х, тогда большая сторона 11х. По определению периметра прямоугольника: $$(4x+11x)*2=60\Leftrightarrow$$$$x=2$$, тогда меньшая сторона $$4*2=8$$, большая сторона  $$11*2=22$$
  2. Из формулы площади прямоугольника $$S=8*22=176$$
Аналоги к этому заданию:

Задание 1942

Най­ди­те пло­щадь пря­мо­уголь­ни­ка, если его пе­ри­метр равен 44 и одна сто­ро­на на 2 боль­ше дру­гой.

Ответ: 120
Скрыть
  1. Пусть х - меньшая сторона, тогда х+2 - большая сторона. Из определения периметра прямоугольника: $$(x+x+2)*2=44\Leftrightarrow$$$$x=10$$, тогда меньшая сторона равна 10, большая 12
  2. Из определения площади прямоугольника: $$S=10*12=120$$
Аналоги к этому заданию:

Задание 1941

В пря­мо­уголь­ни­ке диа­го­наль равна 10, а угол между ней и одной из сто­рон равен 30°. Най­ди­те пло­щадь пря­мо­уголь­ни­ка, делённую на $$\sqrt{3}$$.

Ответ: 25
Скрыть

  1. Из треугольника ABC: пусть угол С равен 30 градусам, тогда $$AB=AC*\sin 30^{\circ}=5$$
  2. Аналогично $$BC=AC*\cos 30^{\circ}=5\sqrt{3}$$
  3. Площадь прямоугольника в таком случае: $$S=5*5\sqrt{3}=25\sqrt{3}$$, в ответе необходимо указать значение, деленное на $$\sqrt{3}$$, то есть 25
Аналоги к этому заданию:

Задание 1940

В пря­мо­уголь­ни­ке одна сто­ро­на равна 10, дру­гая сто­ро­на равна 12. Най­ди­те пло­щадь пря­мо­уголь­ни­ка.

Ответ: 120
Скрыть

По определению площади прямоугольника : $$S=10*12=120$$

Аналоги к этому заданию:

Задание 1939

Най­ди­те пло­щадь квад­ра­та, опи­сан­но­го во­круг окруж­но­сти ра­ди­у­са 83.

Ответ: 27556
Скрыть

Если квадрат описан около окружности, то диаметр окружности и сторона квадрата равны друг другу, тогда радиус окружности в два раза меньше стороны, то есть сторона квадрата $$a=2r=2*83=166$$.
Тогда площадь квадрата составляет $$S=a^{2}=166^{2}=27556$$

Аналоги к этому заданию:

Задание 1938

Най­ди­те пло­щадь квад­ра­та, если его диа­го­наль равна 1.

Ответ: 0,5
Скрыть

Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними. По свойству квадрата, его диагонали равны, а угол между ними составляет 90 градусов.
Тогда площадь квадрата составит $$S=\frac{1}{2}*1*1*\sin 90^{\circ}=0,5$$

Аналоги к этому заданию:

Задание 1937

Из квад­ра­та вы­ре­за­ли пря­мо­уголь­ник (см. ри­су­нок). Най­ди­те пло­щадь по­лу­чив­шей­ся фи­гу­ры.

Ответ: 30
Скрыть

Площадь квадрата на данном рисунке составляет $$6^{2}=36$$, площадь прямоугольника составляет $$3*2=6$$, тогда площадь оставшейся фигуры $$36-6=30$$

Аналоги к этому заданию:

Задание 1936

Пе­ри­метр квад­ра­та равен 40. Най­ди­те пло­щадь квад­ра­та.

Ответ: 100
Скрыть

Так как периметр квадрата составляет 40, тогда сторона квадрата равна $$a=\frac{P}{4}=\frac{40}{4}=10$$. Следовательно, площадь квадрата составляет $$S=a^{2}=10^{2}=100$$

Аналоги к этому заданию:

Задание 1935

Сто­ро­на квад­ра­та равна 10. Най­ди­те его пло­щадь.

Ответ: 100
Скрыть

Площадь квадрата составляет $$S=a^{2}=10^{2}=100$$

Аналоги к этому заданию:

Задание 1857

Точка O — центр окруж­но­сти, на ко­то­рой лежат точки P, Q и R таким об­ра­зом, что OPQR — ромб. Най­ди­те угол ORQ. Ответ дайте в гра­ду­сах.

Ответ: 60
Скрыть

OP=OR=PQ=QR ( по свойству ромба ), тогда, так как PR - общая, то треугольники POR И PQR равны, следовательно, $$\angle O=\angle Q$$. Пусть $$\angle Q=x$$, тогда большая дуга PR=2x (по свойству вписанного угла), тогда меньшая дуга RP=360-2x и $$\angle O=360-2x$$ ( по свойству центрального угла ), тогда $$x=360-2x\Leftrightarrow$$$$x=120$$, то есть $$\angle O=120^{\circ}$$, тогда по свойству углов ромба $$\angle P=180-\angle O=60^{\circ}$$

Аналоги к этому заданию:

Задание 1855

Пло­щадь ромба равна 27, а пе­ри­метр равен 36. Най­ди­те вы­со­ту ромба.

Ответ: 3
Скрыть

Сторона ромба равна $$\frac{36}{4}=9$$, из формулы площади ромба:$$h=\frac{S}{a}=\frac{36}{9}=4$$, где h - высота, a - сторона ромба.

Аналоги к этому заданию:

Задание 1841

Най­ди­те ост­рый угол па­рал­ле­ло­грам­ма ABCD, если бис­сек­три­са угла A об­ра­зу­ет со сто­ро­ной BC угол, рав­ный 33°. Ответ дайте в гра­ду­сах.

Ответ: 66
Скрыть

$$\angle EAD = \angle BEA=33^{\circ}$$ (накрестлежащие), но так как AE - биссектриса, то $$\angle BAE=\angle DAE=33^{\circ}$$, тогда $$\angle A=33+33=66^{\circ}$$

Аналоги к этому заданию:

Задание 1839

Бис­сек­три­са угла A па­рал­ле­ло­грам­ма ABCD пе­ре­се­ка­ет сто­ро­ну BC в точке K. Най­ди­те пе­ри­метр па­рал­ле­ло­грам­ма, если BK = 7, CK = 12.

Ответ: 52
Скрыть

$$\angle BAK=\angle KAD$$(свойство биссеткрисы), $$\angle BKA=\angle KAD$$ (накрестлежащие углы), следовательно, $$\angle BAK=\angle BKA$$, тогда треугольник ABK - равнобедренный и AB=BK=7, но BC=BK+KC=7+132=19=AD, тогда периметр составит: $$2*(7+19)=52$$

Аналоги к этому заданию:

Задание 1838

В па­рал­ле­ло­грам­ме ABCD диа­го­наль AC в 2 раза боль­ше сто­ро­ны AB и ∠ACD = 84°. Най­ди­те угол между диа­го­на­ля­ми па­рал­ле­ло­грам­ма. Ответ дайте в гра­ду­сах.

Ответ: 48
Скрыть

AE=EC (свойство диагоналей параллелограмма), тогда AB=AE, следовательно, треугольник ABE - равнобедренный и $$\angle ABE=\angle BEA$$, $$\angle ACD=\angle BAE$$ (накрестлежащие), тогда из треугольника ABE: $$\angle BEA=\frac{180-\angle BAE}{2}=\frac{180-84}{2}=48$$

Аналоги к этому заданию:

Задание 1837

В па­рал­ле­ло­грамм впи­са­на окруж­ность. Най­ди­те пе­ри­метр па­рал­ле­ло­грам­ма, если одна из его сто­рон равна 6.

Ответ: 24
Скрыть

AB+CD=AD+BC (свойство описанного четырехугольника), но AB=CD, AD=BC (свойство параллелограмма), тогда AB=BC=CD=AD, и ABCD - ромб, тогда его периметр $$6*4=24$$

Аналоги к этому заданию:

Задание 1836

Диа­го­наль  AC  па­рал­ле­ло­грам­ма  ABCD  об­ра­зу­ет с его сто­ро­на­ми углы, рав­ные 30° и 45°. Най­ди­те боль­ший угол па­рал­ле­ло­грам­ма.

Ответ: 105
Скрыть

Пусть $$\angle BAC=30^{\circ}; \angle CAD=45^{\circ}$$, тогда $$\angle A=30+45=75^{\circ}$$, и по свойству углов параллелограмма: $$\angle B=180-\angle A=180-75=105^{\circ}$$, что и есть больший угол

Аналоги к этому заданию:

Задание 1835

Один угол па­рал­ле­ло­грам­ма в два раза боль­ше дру­го­го. Най­ди­те мень­ший угол. Ответ дайте в гра­ду­сах.

Ответ: 60
Скрыть

Пусть $$\angle A=x$$, тогда $$\angle B=2x$$, по свойству углов параллелограмма $$\angle A+\angle B=180^{\circ}\Leftrightarrow$$$$x+2x=180\Leftrightarrow$$$$x=60$$, следовательно, $$\angle A=60^{\circ}$$, что и есть меньший угол

Аналоги к этому заданию:

Задание 1834

Раз­ность углов, при­ле­жа­щих к одной сто­ро­не па­рал­ле­ло­грам­ма, равна 40°. Най­ди­те мень­ший угол па­рал­ле­ло­грам­ма. Ответ дайте в гра­ду­сах.

Ответ: 70
Скрыть

Пусть $$\angle A=x$$, тогда $$\angle B=x+40$$, по свойству углов параллелограмма $$\angle A+\angle B=180\Leftrightarrow$$$$x+x+40=180\Leftrightarrow$$$$x=70$$,то есть $$\angle A=70^{\circ}$$, что и есть меньший угол

Аналоги к этому заданию:

Задание 1833

Диа­го­наль BD па­рал­ле­ло­грам­ма ABCD об­ра­зу­ет с его сто­ро­на­ми углы, рав­ные 65° и 50°. Най­ди­те мень­ший угол па­рал­ле­ло­грам­ма.

Ответ: 65
Скрыть

Пусть $$\angle ABC=65^{\circ};\angle CBD=50^{\circ}$$, тогда $$\angle B=65+50=115^{\circ}$$, и по свойству углов параллелограмма $$\angle A=180-\angle B=180-115=65^{\circ}$$, что и есть меньший угол парарллелограмма

Аналоги к этому заданию:

Задание 1042

Пло­щадь па­рал­ле­ло­грам­ма ABCD равна 176. Точка E — се­ре­ди­на сто­ро­ны CD. Най­ди­те пло­щадь тре­уголь­ни­ка ADE.

Ответ: 44
Аналоги к этому заданию:

Задание 1041

Пло­щадь па­рал­ле­ло­грам­ма ABCD равна 153. Най­ди­те пло­щадь па­рал­ле­ло­грам­ма A'B'C'D', вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся се­ре­ди­ны сто­рон дан­но­го па­рал­ле­ло­грам­ма.

Ответ: 76,5
Аналоги к этому заданию:

Задание 1039

В ромбе ABCD угол ACD равен 43°. Най­ди­те угол ABC. Ответ дайте в гра­ду­сах.

Ответ: 94
Аналоги к этому заданию:

Задание 1038

В ромбе ABCD угол ABC равен 122°. Най­ди­те угол ACD. Ответ дайте в гра­ду­сах.

Ответ: 29
Аналоги к этому заданию:

Задание 1037

Диа­го­на­ли ромба от­но­сят­ся как 3:4. Пе­ри­метр ромба равен 200. Най­ди­те вы­со­ту ромба.

Ответ: 48
Аналоги к этому заданию:

Задание 1036

Най­ди­те боль­шую диа­го­наль ромба, сто­ро­на ко­то­ро­го равна  $$\sqrt{3}$$ , а ост­рый угол равен 60°.

 

Ответ: 3
Аналоги к этому заданию:

Задание 1035

Точка пе­ре­се­че­ния бис­сек­трис двух углов па­рал­ле­ло­грам­ма, при­ле­жа­щих к одной сто­ро­не, при­над­ле­жит про­ти­во­по­лож­ной сто­ро­не. Мень­шая сто­ро­на па­рал­ле­ло­грам­ма равна 5. Най­ди­те его боль­шую сто­ро­ну.

Ответ: 10
Аналоги к этому заданию:

Задание 1034

Бис­сек­три­са ту­по­го угла па­рал­ле­ло­грам­ма делит про­ти­во­по­лож­ную сто­ро­ну в от­но­ше­нии 4 : 3, счи­тая от вер­ши­ны остро­го угла. Най­ди­те боль­шую сто­ро­ну па­рал­ле­ло­грам­ма, если его пе­ри­метр равен 88.

Ответ: 28
Аналоги к этому заданию:

Задание 1033

Две сто­ро­ны па­рал­ле­ло­грам­ма от­но­сят­ся как 3 : 4, а пе­ри­метр его равен 70. Най­ди­те боль­шую сто­ро­ну па­рал­ле­ло­грам­ма.

Ответ: 20
Аналоги к этому заданию:

Задание 1032

Най­ди­те угол между бис­сек­три­са­ми углов па­рал­ле­ло­грам­ма, при­ле­жа­щих к одной сто­ро­не. Ответ дайте в гра­ду­сах.

Ответ: 90
Аналоги к этому заданию:

Задание 1031

Най­ди­те вы­со­ту ромба, сто­ро­на ко­то­ро­го равна  $$\sqrt{3} $$ , а ост­рый угол равен 60°.

 

Ответ: 1,5
Аналоги к этому заданию:

Задание 1030

Пе­ри­метр па­рал­ле­ло­грам­ма равен 46. Одна сто­ро­на па­рал­ле­ло­грам­ма на 3 боль­ше дру­гой. Най­ди­те мень­шую сто­ро­ну па­рал­ле­ло­грам­ма.

Ответ: 10
Аналоги к этому заданию:

Задание 1029

Диа­го­наль па­рал­ле­ло­грам­ма об­ра­зу­ет с двумя его сто­ро­на­ми углы 24 и 36. Най­ди­те боль­ший угол па­рал­ле­ло­грам­ма. Ответ дайте в гра­ду­сах.

Ответ: 120
Аналоги к этому заданию:

Задание 1028

Пло­щадь ромба равна 6. Одна из его диа­го­на­лей в 3 раза боль­ше дру­гой. Най­ди­те мень­шую диа­го­наль.

Ответ: 2
Аналоги к этому заданию:

Задание 1027

Пло­щадь ромба равна 18. Одна из его диа­го­на­лей равна 12. Най­ди­те дру­гую диа­го­наль.

Ответ: 3
Аналоги к этому заданию:

Задание 1025

Най­ди­те пло­щадь ромба, если его вы­со­та равна 2, а ост­рый угол 30°.

Ответ: 8
Аналоги к этому заданию:

Задание 1024

Пло­щадь па­рал­ле­ло­грам­ма равна 40, две его сто­ро­ны равны 5 и 10. Най­ди­те боль­шую вы­со­ту этого па­рал­ле­ло­грам­ма

Ответ: 8
Аналоги к этому заданию:

Задание 1023

Сто­ро­ны па­рал­ле­ло­грам­ма равны 9 и 15. Вы­со­та, опу­щен­ная на первую сто­ро­ну, равна 10. Най­ди­те вы­со­ту, опу­щен­ную на вто­рую сто­ро­ну па­рал­ле­ло­грам­ма.

Ответ: 6
Аналоги к этому заданию:

Задание 1022

Па­рал­ле­ло­грамм и пря­мо­уголь­ник имеют оди­на­ко­вые сто­ро­ны. Най­ди­те ост­рый угол па­рал­ле­ло­грам­ма, если его пло­щадь равна по­ло­ви­не пло­ща­ди пря­мо­уголь­ни­ка. Ответ дайте в гра­ду­сах.

 

Ответ: 30
Аналоги к этому заданию:

Задание 1021

Пе­ри­метр пря­мо­уголь­ни­ка равен 34, а пло­щадь равна 60. Най­ди­те диа­го­наль этого пря­мо­уголь­ни­ка.

Ответ: 13
Аналоги к этому заданию:

Задание 1020

Пе­ри­метр пря­мо­уголь­ни­ка равен 28, а диа­го­наль равна 10. Най­ди­те пло­щадь этого пря­мо­уголь­ни­ка.

Ответ: 48
Аналоги к этому заданию:

Задание 1019

Периметр прямоугольника равен 42, а площадь 98. Найдите большую сторону прямоугольника.

Ответ: 14
Аналоги к этому заданию:

Задание 1004

Най­ди­те пе­ри­метр пря­мо­уголь­ни­ка, если его пло­щадь равна 18, а от­но­ше­ние со­сед­них сто­рон равно 1:2.

Ответ: 18
Аналоги к этому заданию:

Задание 1003

Пло­щадь пря­мо­уголь­ни­ка равна 18. Най­ди­те его боль­шую сто­ро­ну, если она на 3 боль­ше мень­шей сто­ро­ны.

Ответ: 6
Аналоги к этому заданию:

Задание 1001

В па­рал­ле­ло­грам­ме ABCD AB = 3, AD = 21,  $$\sin a = \frac{6}{7} $$ . Най­ди­те боль­шую вы­со­ту па­рал­ле­ло­грам­ма.

Ответ: 18