Перейти к основному содержанию

ЕГЭ Профиль

ЕГЭ (профиль) / (C7) Числа и их свойства

Задание 10120

Написаны три различных натуральных числа. Затем написаны три различных попарных произведения этих чисел и произведение всех трех исходных чисел. Сумма полученных семи чисел оказалась равной 1514 .

а) Может ли хотя бы одно из исходных чисел быть нечетным?
б) Может ли одно из исходных чисел быть больше чем число 200 ?
в) Найдите три исходных числа.
Ответ: А) нет Б) нет В)2, 4 ,10
 

Задание 10139

В фирме имеется n отделов, в одном из которых работает 1/8 сотрудников, в другом ‐ 210 сотрудников, а численность каждого из оставшихся отделов составляет 1/9 от всей численности сотрудников фирмы.

а) Может ли быть n>9 ?
б) Найдите наименьшее возможное значение n
б) Найдите наибольшее возможное значение n
Ответ: нет; 8; 9
 

Задание 10173

Последовательность $$(a_{n})$$ состоит из 100 натуральных чисел. Каждый член последовательности, начиная со второго, либо вдвое меньше предыдущего, либо больше его на 150.

а) Может ли такая последовательность быть образована ровно пятью различными числами?
б) Чему может равняться , $$a_{100}$$ если $$a_{1}=75$$ ?
в) Какое наименьшее значение может принимать самое большое из чисел такой последовательности?
Ответ: а) да б) 14925 в) 160
 

Задание 10179

Два натуральных числа a и b таковы, что если к десятичной записи числа приписать справа десятичную запись числа b, то получится число, большее произведения a и b на 32.

а) Приведите пример таких чисел a и b 
б) Может ли число b быть двухзначным?
в) Найдите все числа a и b , удовлетворяющие условию задачи. (Для «крутых» ‐ ноль натуральным числом не считается)
Ответ: А)a=12, b=8 Б)нет В)a=12, b=8 или a=23, b=9
 

Задание 10198

На клетчатой бумаге нарисован прямоугольник размера $$m\times n$$ клеток и проведена его диагональ. Все вершины прямоугольника лежат в узлах сетки и стороны прямоугольника не пересекают клетки.

а) Через сколько узлов сетки пройдет диагональ, если $$m=100, n=64$$
б) На сколько частей эта диагональ делится линиям сетки, если $$m=195, n=221$$
в) Найдите m и n, если известно, что числа m и n взаимно простые, m<n и диагональ этого прямоугольника не пересекает ровно 2020 клеток этого прямоугольника.
Ответ: А)5 Б)403 В)(2;2021), (5;506), (11;203)
 

Задание 10219

В течение дня посетители приходили к кассиру, желая произвести различные платежи (сумма любого платежа – четное число рублей). Каждый протягивал купюру номиналом 5000 рублей. Кассир выдавал сдачу, имея только 300 монет по 10 рублей и 500 монет по 2 рубля. По итогам дня все монеты оказались потраченными на сдачу.

а) Могло ли за день быть 250 посетителей, если они получили равную сдачу?
б) Каким могло быть наибольшее число посетителей, если каждый получил одинаковую сдачу?
в) Для какого наибольшего количества посетителей кассир мог выдать на сдачу монеты указанным способом при любом распределении сдач, не противоречащим условию?
Ответ: а) нет б) 400 в) 126
 

Задание 10266

За круглым столом сидели 110 человек, а на столе лежали абрикосы. Для каждой пары соседей число съеденных ими абрикосов отличается на 3.

а) Могли ли быть съедены все абрикосы, если изначально их было 1000?
б) Какое наименьшее число абрикосов могло остаться, если изначально их было 1000?
в) Пусть один из присутствующих съел a абрикосов, а другой b. Найдите наибольшее возможное значение a-b при условии, что изначально было 10 000 абрикосов?
Ответ: нет; 1; 165
 

Задание 10292

Имеются два многочлена от целочисленной переменной x :

$$p(x)=1+x^{2}+x^{4}+...+x^{2k}$$
$$q(x)=1+x+x^{2}+...+x^{k}$$

Рассмотрим функцию $$f(x)=\frac{p(x)}{q(x)}$$ от целочисленной переменной x , определенную для тех значений x , для которых $$q(x)\neq 0$$

а) Может ли функция $$f(x)$$ принимать не целые значения при k=3?
б) Может ли функция $$f(x)$$ принимать не целые значения при k=2 ?
в) При каких натуральных значениях k функция $$f(x)$$ может принимать только целые значения?
Ответ: а)да б)нет в)$$k=2n,n\in Z$$
 

Задание 10396

В ячейках таблицы 5 на 9 расставлены натуральные числа, среди которых ровно 33 нечетных. Александра рассматривает пары соседних ячеек, имеющих общую сторону. Если произведение чисел в паре четно, наша героиня считает такую пару зачетной.

А) Может ли в таблице быть ровно 22 зачетные пары?
Б) Может ли в таблице быть ровно 49 зачетных пар?
В) Какое наибольшее число зачетных пар может быть в таблице?
Ответ: да,нет,47
 

Задание 10446

В рамках проекта ежегодной аттестации учителей начальных классов, в котором приняли участие два города А и В, 51 учитель написал тест. Известно, что из каждого города тест написали хотя бы два учителя, причем каждый набрал целое положительное количество баллов, а после предварительных подсчетов средний балл в каждом городе оказался целым числом. Затем один из учителей, писавших тест, переехал из города А в город В, и средние баллы по городам пришлось пересчитать.

а) Мог ли средний балл в городе А после пересчета вырасти в два раза?
б) Известно, что после пересчета средние баллы в городах выросли на 10%. Мог ли первоначальный средний балл в городе В равняться 1?
в) Найдите наименьшее значение первоначального среднего балла в городе В в условиях пункта б) (если после пересчета средние баллы в городах выросли на 10%)
Ответ: нет, нет, 3
 

Задание 10502

Набор состоит из сорока пяти целых положительных чисел, среди которых есть числа 6, 7, 8. Среднее арифметическое любых тридцати пяти чисел этого набора меньше 2.

а) Может ли такой набор содержать ровно 26 единиц?
б) Может ли такой набор содержать менее 26 единиц?
в) Докажите, что в любом таком наборе есть несколько чисел, сумма которых равна 50.
Ответ: да; нет; ч.т.д.
 

Задание 10513

На доске выписаны все натуральные числа от 1 до 2014 без пропусков и повторений: 1, 2, 3, …, 2013, 2014. С выписанными на доске числами проделывают следующие операции: выбирают какие‐либо два числа и записывают на доске модуль их разности, увеличенный на 1, а сами выбранные числа стирают. Так продолжают до тех пор, пока на доске не останется только одно число.

а) Какое наименьшее число может остаться на доске?
б) Какое наибольшее число может остаться на доске?
Ответ: А)2 Б)2014
 

Задание 10533

На доске написано 38 различных натуральных чисел, каждое из которых либо чётное, либо его десятичная запись оканчивается на цифру 5. Сумма написанных чисел равна 1255.

а) Может ли на доске быть ровно 31 чётное число?
б) Могут ли ровно три числа на доске оканчиваться на 5?
в) Какое наименьшее количество чисел, оканчивающихся на 5, может быть на доске?
Ответ: да; нет; 5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 10561

Натуральное число $$A$$ таково, что, если его первую цифру переставить на последнее место, получится число, в $$n>1$$ раз меньше числа $$A$$.

а) Существует ли двухзначное число $$A$$, удовлетворяющее указанным условиям?

б) Найдите наименьшее число $$A$$, удовлетворяющее указанным условиям, если $$n=5$$, а число $$A$$ начинается с цифры 7. в) Приведите пример числа, которое при перестановке его первой цифры на последнее место увеличивается в 3 раза.

Ответ: а)нет б)714285 в)142857
 

Задание 10581

Имеется прямоугольная таблица размером $$M\times N$$, заполненная числами 0 и 1, обладающая следующими свойствами. Во-первых, в каждой строке и в каждом столбце есть хотя бы один элемент, равный 1. Во-вторых, нет ни одной пары одинаковых строк, а также ни одной пары одинаковых столбцов. Таблицы, обладающие этими свойствами, назовем «хорошими».

Две таблицы назовем эквивалентными в том (и только в том) случае, если из одной из них можно получить другую путем перестановки строк и/или столбцов. Приведем пример двух эквивалентных таблиц размером $$3\times 3$$.

1 1 1
1 1 0
0 1 0

 

1 0 1
0 0 1
1 1 1

Вторая таблица получается из первой сначала перестановкой в ней 1-й и 3-й строк, потом 2-го и 3-го столбца в полученной таблице, а затем 1-й и 2-й строки в последней полученной таблице.

а) Сколько существует различных попарно неэквивалентных «хороших» таблиц размером $$2\times 3$$?

б) Укажите количество всех таблиц, эквивалентных «хорошей» таблице

1 1 0
1 0 1
0 1 1

в) Какое максимальное число столбцов может быть в «хорошей» таблице, содержащей М строк?

Ответ: а)1 б)6 в)$$2^{M}-1$$