Перейти к основному содержанию

ЕГЭ Профиль

ЕГЭ (профиль) / (C6) Задача с параметром

 

Задание 3334

Найдите все значения a, при каждом из которых система $$\left\{\begin{matrix}x\sin a-y\cos a+3\sin a+\cos a=0\\ 2x+y-1=0\end{matrix}\right.$$ имеет решение (x;y) в квадрате $$-4\leq x\leq -1 , 2\leq y\leq 5$$

Ответ: $$[\frac{\pi }{4}+\pi n;\arctan 4 +\pi n] ,n\in Z$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 3381

Найдите все значения параметра a, при которых существует решение уравнения: $$|x|+|ax+2a-8|=4$$

Ответ: $$\alpha \in (-\infty ;-4]\cup [\frac{4}{3};\infty )$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 3429

Найдите все значения параметра р, при каждом из которых система уравнений имеет два различных решения: $$\left\{\begin{matrix}(y-1)^{2}=x-|x|\\(x-p)^{2}+2p+y=25\end{matrix}\right.$$

Ответ: [4;12)
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 3666

Найдите все значения параметра а, при каждом из которых уравнение $$\lg(1-x)+\lg(a^{2}-x^{2})=\lg(x-a)^{2}$$ имеет ровно один корень.

Ответ: $$(-\infty ; 0)\cup (0;1]\cup $$ {2}
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 3865

Найдите все значение параметра a , при которых система $$\left\{\begin{matrix}9x^{2}-6xy+y^{2}+6x-13y+3=0\\13x^{2}+6xy+10y^{2}+16x+2y-4ax-6ay+a^{2}-2a+3=0\end{matrix}\right.$$ имеет хотя бы одно решение.

Ответ: $$[\frac{2-3\sqrt{2}}{3};\frac{2+3\sqrt{2}}{3}]$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 4022

Найдите все значения параметра a , при каждом из которых система уравнений $$\left\{\begin{matrix}x^{2}-2xy-3y^{2}=8\\2x^{2}+4xy+5y^{2}=a^{4}-4a^{3}+4a^{2}-12+\sqrt{105}\end{matrix}\right.$$имеет хотя бы одно решение.

Ответ: $$a\in(-\infty;-1]\cup[3;+\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\left\{\begin{matrix}x^{2}-2xy-3y^{2}=8\\2x^{2}+4xy+5y^{2}=a^{4}-4a^{3}+4a^{2}-12+\sqrt{105}\end{matrix}\right.$$

$$a^{4}-4a^{3}+4a^{2}-12+\sqrt{105}=b$$

$$\left\{\begin{matrix}-bx^{2}+2bxy+3by^{2}=-8b\\16x^{2}+32xy+40y^{2}=8b\end{matrix}\right.$$

$$x^{2}(16-b)+xy(2b+32)+y^{2}(40+3b)=0$$ $$\div y^{2}$$

$$\frac{x^{2}}{y^{2}}(16-b)+\frac{x}{y}(2b+32)+(40+3b)=0$$

$$D=(2b+32)^{2}-(16-b)(3b+40)\cdot4\geq0$$

$$4b^{2}+128b+1024-4(48b+640-3b^{2}-40b)\geq0$$

$$4b^{2}+128b+1024-32b-2560+12b^{2}\geq0$$

$$16b^{2}+96b-1536\geq0$$

$$b^{2}+6b-96\geq0$$

$$D=36+384=420$$

$$b_{1,2}=\frac{-6\pm2\sqrt{105}}{2}=-3\pm\sqrt{105}$$

$$\left\{\begin{matrix}b\leq-3-\sqrt{105}\\b\geq-3+\sqrt{105}\end{matrix}\right.$$ $$\Leftrightarrow$$

$$\left\{\begin{matrix}a^{4}-4a^{3}+4a^{2}-12+\sqrt{105}\leq-3-\sqrt{105}\\a^{4}-4a^{3}+4a^{2}-12+\sqrt{105}\geq-3+\sqrt{105}\end{matrix}\right.$$

2) $$a^{4}-4a^{3}+4a^{2}-19\geq0$$

$$81-4\cdot27+4\cdot9-19\geq0$$

$$(a-3)(a+1)(a^{2}-2a+3)\geq0$$

$$a^{2}-2a+3=0$$

$$D=4-12<0$$

$$(a-3)(a+1)\geq0$$

$$\left\{\begin{matrix}a\geq3\\a\leq-1\end{matrix}\right.$$

1) $$a^{4}-4a^{3}+4a^{2}-12+\sqrt{105}\leq-3-\sqrt{105}$$

$$a^{4}-4a^{3}+4a^{2}-9+2\sqrt{105}\leq0$$

$$f'(a)=4a^{3}-12a^{2}+8a=0$$

$$a^{3}-3a^{2}+2a=0$$

$$a(a^{2}-3a+2)=0$$

$$a=0;a=2;a=1$$

$$f(0)=2\sqrt{105}-9>0$$

$$f(2)=16-32+16-9+2\sqrt{105}>0$$

Так как обы минимальных значения больше нуля, то сама функция меньше нуля быть не может, отсюда (1) не имеет решений, и ответом будет только промежутки с (2)

$$a\in(-\infty;-1]\cup[3;+\infty)$$

 

Задание 4192

Найти все значения параметра $$a$$, при каждом из которых существует хотя бы одно $$x$$, удовлетворяющее условию: $$\left\{\begin{matrix}x^{2}+(5a+2)x+4a^{2}+2a<0\\x^{2}+a^{2}=4\end{matrix}\right.$$

Ответ: $$(-\sqrt{2};-\frac{16}{17});(0;\sqrt{2})$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 4400

Найти все значения параметра a, при каждом из которых существует хотя бы одно x, удовлетворяющее системе уравнений: $$\left\{\begin{matrix}|x^{2}-5x+4|-9x^{2}-5x+4+10x|x|=0\\x^{2}-2(a-1)x+a(a-2)=0\end{matrix}\right.$$

Ответ: $$a\in{-1}\cup[1;6]$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) $$|x^{2}-5x+4|-9x^{2}-5x+4+10x|x|=0$$

a) $$x<0$$

$$x^{2}-5x+4-9x^{2}-5x+4-10x^{2}=0$$; $$-18x^{2}-10x+8=0$$; $$9x^{2}+5x-4=0$$; $$D=25+144=169=13^{2}$$; $$x_{1}=\frac{-5+13}{18}=\frac{4}{9}$$ $$\notin$$ $$x<0$$; $$x_{2}=\frac{-5-13}{18}=-1$$

б) $$x\in[0;1]\cup[4;+\infty)$$

$$x^{2}-5x+4-9x^{2}-5x+4+10x^{2}=0$$; $$2x^{2}-10x+8=0$$; $$x^{2}-5x+4=0$$; $$x=1$$; $$x=4$$

в) $$x\in(1;4)$$

$$-x^{2}+5x-4-9x^{2}-5x+4+10x^{2}=0$$; $$0=0$$ $$\Rightarrow$$ $$x\in(1;4)$$

Результат: $$x\in{-1}\cup[1;4]$$

2) $$x^{2}-2(a-1)x+a(a-2)=0$$; $$D=4(a^{2}-2a+1)-4a(a-2)=$$ $$4a^{2}-8a+4-4a^{2}+8a=4$$; $$x_{1}=\frac{2(a-1)+2}{2}=\frac{2a}{2}=a$$; $$x_{2}=\frac{2(a-1)-2}{2}=\frac{2a-4}{2}=a-2$$

1. $$\left\{\begin{matrix}x_{1}=-1\\x_{2}=-1\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}a=-1\\a-2=-1\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}a=-1\\a=1\end{matrix}\right.$$

2. $$\left\{\begin{matrix}1\leq x_{1}\leq4\\1\leq x_{2}\leq4\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}1\leq a\leq4\\1\leq a-2\leq4\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}1\leq a\leq4\\3\leq a\leq6\end{matrix}\right.$$

Общим решением будет объединение: $$a\in{-1}\cup[1;6]$$

 

Задание 4577

Найдите все а, при каждом из которых система $$\left\{\begin{matrix}x+y+9(\sqrt{x}+\sqrt{y})-3\sqrt{xy}=86-a^{a}\\\sqrt{xy}-7(\sqrt{x}+\sqrt{y})=a^{2}+a-45\end{matrix}\right.$$ имеет ровно три решения.

Ответ: $$-\frac{7}{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 4776

При каких значениях параметра p система $$\left\{\begin{matrix} x^{2}+2px+3p^{2}+3p+3\leq 3\sin y - 4\cos y\\ 0\leq y\leq 2\pi \end{matrix}\right.$$

Ответ: $$-2;\frac{1}{2}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 4823

Найдите все значения параметра а при каждом из которых система $$\left\{\begin{matrix}1-\sqrt{|x-1|}=\sqrt{7|y|}\\49y^{2}+x^{2}+4a=2x-1\end{matrix}\right.$$ имеет ровно четыре различных решения.

Ответ: $$-\frac{1}{4}; -\frac{1}{32}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

     Перепишем систему в виде $$\left\{\begin{matrix}\sqrt{\left | x-1 \right |}+\sqrt{7\left | y \right |}=1\\\left | x-1 \right |^{2}+(7\left | y \right |)^{2}=-4a\end{matrix}\right.$$

     Пусть $$\sqrt{\left | x-1 \right |}=m\geq 0$$; $$\sqrt{7\left | y \right |}=n\geq 0$$

     Тогда система примет вид : $$\left\{\begin{matrix}m+n=1\\m^{4}+n^{4}=-4a\end{matrix}\right.(*)$$. Если пара чисел $$(m_{0};n_{0})$$ является решением системы (*), то пара $$(n_{0}; m_{0})$$ также её решение :

     1) Пусть $$m_{0}\neq n_{0}, m_{0}, n_{0}>0$$. Тогда $$\left[\begin{matrix}\left\{\begin{matrix}\left | x-1 \right |=m_{0}^{2}\\7\left | y \right |=n_{0}^{2}\end{matrix}\right.\\\left\{\begin{matrix}\left | x-1 \right |=n_{0}^{2}\\7\left | y \right |=m_{0}^{2}\end{matrix}\right.\end{matrix}\right.(**)$$. Каждая система совокупности имеет четыре решения, тогда данная система имеет 8 различных решений , что не удовлетворяют  условию задачи .

     2) Пусть одно из значений $$m_{0}$$ или $$n_{0}$$ равно нулю, тогда пары  (0;1) и (1;0)-решения системы(*), -4a=1, откуда  $$a=-\frac{1}{4}$$ . В этом случае совокупность (**) примет вид :

$$\left[\begin{matrix}\left\{\begin{matrix}\left | x-1 \right |=0\\7\left | y \right |=1\end{matrix}\right.\\\left\{\begin{matrix}\left | x-1 \right |=1\\7\left | y \right | =0\end{matrix}\right.\end{matrix}\right.$$, откуда получим 4 решения данной системы : $$(1; \frac{1}{7})$$, $$(1; -\frac{1}{7})$$, $$(2;0)$$, $$(0;0)$$

     3) Пусть $$m_{1}=n_{0}$$, тогда $$\left\{\begin{matrix}m_{0}+m_{0}=1\\m_{0}^{4}+m_{0}^{4}=-4a\end{matrix}\right.$$., откуда

$$m_{0}=\frac{1}{2}$$, $$a=-\frac{1}{32}$$ и система (*) имеет одно решение $$(\frac{1}{2};\frac{1}{2})$$. В Этом случае совокупность (**) примет вид :

$$\left\{\begin{matrix}\left | x-1 \right |=\frac{1}{4}\\7\left | y \right |=\frac{1}{4}\end{matrix}\right.$$, откуда получим 4 решения данной системы: $$(1\frac{1}{4} ;\frac{1}{28})$$, $$(1\frac{1}{4}; -\frac{1}{28})$$, $$(\frac{3}{4}; \frac{1}{28})$$, $$(\frac{3}{4};-\frac{1}{28})$$.

     Докажем, что при $$a=-\frac{1}{4}$$ и $$a=-\frac{1}{32}$$ других, кроме найденных решений,  данная система не имеет .

     1. При  $$a=-\frac{1}{4}$$ система (*) имеет вид: $$\left\{\begin{matrix}m+n=1\\m^{4}+n^{4}=1\end{matrix}\right.$$. Если $$m\neq 0$$, $$n\neq 0$$, то $$m,n \in (0;1)$$ и $$\left\{\begin{matrix}m^{4}<m\\n^{4}<n\end{matrix}\right.$$

   Тогда $$m^{4}+n^{4}<m+n$$, т.е. $$m^{4}+n^{4}<1$$, что противоречит  второму уравнению системы . Следовательно, при $$a=-\frac{1}{4}$$ других решений системы нет и $$a=-\frac{1}{4}$$ удовлетворяет условию .

     2. При $$a=-\frac{1}{32}$$ система (*) имеет вид : $$\left\{\begin{matrix}m+n=1\\m^{4}+n^{4}=\frac{1}{8}\end{matrix}\right.$$ . Пусть$$\left\{\begin{matrix}m=\frac{1}{2}+t\\n=\frac{1}{2}-t\end{matrix}\right.$$ , тогда $$\left\{\begin{matrix}m^{4}=(\frac{1}{2}+t)^{2}=\frac{1}{16}+4*\frac{1}{8}t+6*\frac{1}{4}t^{2}+4*\frac{1}{2}t^{3}+t^{4}\\n^{4}=(\frac{1}{2}-t)^{4}=\frac{1}{16}-4*\frac{1}{8}t+6*\frac{1}{4}t^{2}-4*\frac{1}{2}t^{3}+t^{4}\end{matrix}\right.$$. И $$m^{4}+n^{4}=\frac{1}{8}+3t^{2}+2t^{4}$$. Имеем : $$\frac{1}{8}+3t^{2}+2t^{2}=\frac{1}{8}$$, откуда $$t=0$$, $$m =n=\frac{1}{2}\Rightarrow$$ других решений нет и $$a=-\frac{1}{32}$$ удовлетворяет условию .

 

Задание 4867

Найдите все значения параметра a, при которых уравнение $$a(2\log_{2} (|x|+2) - a -3)\sqrt{\log_{2} (|x|+2) -a +2}=0$$ имеет ровно два различных корня

Ответ: $$a\in (-1;3) \cup [7;+\infty )$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1)$$a\neq 0$$ - иначе получаем 0 = 0, и, следовательно, множество корней

2)Пусть $$\log_{2} (|x|+2) = $$ y при этом будет строго больше 1, так как $$|x|+2 \geq 2 \Rightarrow \log_{2} (|x|+2)\geq 1$$ при всех х, и если y равен единице, то x = 0 и мы получаем всего один корень. Так же получаем ОДЗ с учетом корня четной степени: $$y \geq a-2$$

$$a(2y-a-3)\sqrt{y-a+2}=0\Leftrightarrow $$$$y_{1}=\frac{a+3}{2} ; y_{2} =a-2$$

Если мы имеем какой-либо корень y=m, то, из-за модуля, при обратной замене мы получим два корня по х. Следовательно, чтобы выполнялось условия существования именно двух корней по x, один корень по y не должен входить в ОДЗ. Отсюда 2 случая:

а) $$\left\{\begin{matrix}\frac{a+3}{2}\leq a-2\\ a-2> 1\end{matrix}\right.\Leftrightarrow$$$$ \left\{\begin{matrix}a\geq 7\\ a> 3\end{matrix}\right.\Leftrightarrow$$$$ a\geq 7$$

б)$$\left\{\begin{matrix}\frac{a+3}{2}> a-2\\ \frac{a+3}{2}> 1\\ a-2< 1\end{matrix}\right.\Leftrightarrow $$$$\left\{\begin{matrix}a< 7\\a> -1 \\ a< 3\end{matrix}\right.\Leftrightarrow $$$$a\in (-1;3)$$

В результате получим: $$a\in (-1;3) \cup [7;+\infty )$$

 

Задание 4918

Найдите все значения параметра , при каждом из которых уравнение $$x^{2}-4x-12=2|x-a+2|-16$$ имеет ровно три различных решения.  

Ответ: 3,5; 4; 4,5
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

Перенесем -16 влево: $$x^{2}-4x-12+16=2|x-(a-2)|\Leftrightarrow $$ $$(x-2)^{2}=2|x-(a-2)|$$ Рассмотрим графики функций: $$f(x)=(x-2)^{2}$$ и $$g(x)=2|x-(a-2)|$$. В первом случае представлена парабола с вершиной в точке (2;0), во втором случае график модуля (галочка) с вершиной в точке (a-2 ; 0). Данные фукциии имеют в зависимости от параметра а от двух до четырех пересечений. Нам необходимо три. Рассмотрим все возможные случаи:

 

Задание 4965

Найдите все значения параметра , при каждом из которых наименьшее значение функции $$y=4x^{2}-4ax+(a^{2}-2a+2)$$ на отрезке $$0\leq x\leq2$$ равно 3.

Ответ: $$1-\sqrt{2} ;5+\sqrt{10}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть
Найдем вершину параболы:$$x_{0}=-\frac{-4a}{4\cdot2}=\frac{a}{2}$$. В таком случае координата y вершины составляет: $$y_{x_{0}}=4\cdot(\frac{a}{2})^{2}-4a\cdot\frac{a}{2}+a^{2}-2a+2=$$ $$\frac{4a^{2}}{4}-\frac{4a^{2}}{2}+a^{2}-2a+2=$$ $$a^{2}-2a^{2}+a^{2}-2a+2=2-2a$$. Далее необходимо рассмотреть три варианта расположения вершины параболы относительно заданного промежутка:
1) Когда вершина параболы левее промежутка: тогда наименьшее значение функция принимает в точке с абсциссой 0:  
$$\left\{\begin{matrix}\frac{a}{2}<0\\y(0)=3\end{matrix}\right.$$
$$y(0)=4\cdot0-4a\cdot0+a^{2}-2a+2=3$$; $$a^{2}-2a-1=0$$
$$D=4+4=8$$
$$a_{1}=\frac{2+\sqrt{8}}{2}=1+\sqrt{2}\notin\frac{a}{2}<0$$
$$a_{2}=1-\sqrt{2}$$
2) Когда вершина параболы на промежутке: тогда наименьшее значение функция принимает в вершине параболы:
$$\left\{\begin{matrix}0\leq\frac{a}{2}\leq2\\2-2a=3\end{matrix}\right.$$
$$-2a=1$$ $$\Leftrightarrow$$
$$a=-0,5\notin 0\leq\frac{a}{2}\leq2$$
3) Когда вершина правее заданного промежутка, тогда наименьшее значение будет в точке с абсциссой 2:
$$\left\{\begin{matrix}\frac{a}{2}>2\\y(2)=3\end{matrix}\right.$$
$$y(2)=4\cdot4-4a\cdot2+a^{2}-2a+2=3$$
$$16-8a+a^{2}-2a+2-3=0$$; $$a^{2}-10a+15=0$$
$$D=100-60=40$$
$$a_{1,2}=\frac{1=\pm\sqrt{40}}{2}=5\pm\sqrt{10}$$
$$5-\sqrt{10}\notin \frac{a}{2}>2$$
В итоге получаем два значения: $$1-\sqrt{2} ;5+\sqrt{10}$$
 

Задание 5014

Найдите все $$a$$, при каждом из которых уравнение $$\log{\frac{1,2x}{\pi}}(2\sin^{2}x-4a\sin x-\sin x+2a+1)=0$$ имеет не более трёх корней,  входящих в отрезок $$[-\frac{\pi}{2};\frac{5\pi}{2}]$$

Ответ: $$(-\infty;-\frac{1}{2}]\cup\frac{1}{4}$$$$\cup(\frac{1}{2};\infty)$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

$$\left\{\begin{matrix}2\sin^{2}x-4a\sin x-\sin x+2a+1>0\\\frac{1,2x}{\pi}>0\\x\in[-\frac{\pi}{2};\frac{5\pi}{2}]\\2\sin^{2}x-4a\sin x-\sin x+2a+1=1\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}2\sin^{2}x-4a\sin x-\sin x+2a+1=0(1)\\x\in(0;\frac{5\pi}{2})\cup{\frac{5\pi}{6}}\end{matrix}\right.$$

1) $$2\sin^{2}x-\sin x(4a+1)+2a=0$$

$$D=16a^{2}+8a+1-16a=(4a-1)^{2}$$; $$\sin x=\frac{4a+1\pm|4a-1|}{2}=2a;\frac{1}{2}$$; $$\sin x=\frac{1}{2}$$ $$\Leftrightarrow$$ $$x=(-1)^{n}\frac{\pi}{6}+\pi n,n\in Z$$; $$\sin x=2a$$ $$\Leftrightarrow$$ $$x=(-1)^{n}\arcsin2a+\pi n,n\in Z$$

$$\sin x=\frac{1}{2}$$ дает с учетоа ОДЗ 2 корня: $$(\frac{\pi}{6};\frac{13\pi}{6})$$, значит $$\sin x=2a$$ не более одного отличного решения $$\Rightarrow$$ $$2a\in(-\infty;-1]\cup{\frac{1}{2}}\cup(1;+\infty)$$ $$\Rightarrow$$ $$a\in(-\infty;-\frac{1}{2}]\cup{\frac{1}{4}}\cup(\frac{1}{2};+\infty)$$