Перейти к основному содержанию

ЕГЭ Профиль

ЕГЭ (профиль) / (C2) Стереометрическая задача

 

Задание 2992

Внутри куба расположены два равных шара, касающихся друга. При этом один шар касается трех граней куба, имеющих общую вершину, а другой касается трех оставшихся граней.
а) Докажите, что центры шаров принадлежат диагонали куба, исходящей из общей для граней вершины.
б) Найдите радиусы этих шаров, если ребро куба равно 13.

Ответ: $$\frac{13\sqrt{3}}{2+2\sqrt{3}}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

a) Пусть шар с центром в точке $$O_1$$ касается граней $$ABCD,AA_1D_1D,AA_1B_1B$$, соответственно шар с центром в точке $$O_2$$ касается граней $$A_1B_1C_1D_1,BB_1C_1C,DD_1C_1C$$.

Так как первый шар касается граней $$AA_1B_1B,AA_1D_1D$$, то его центр $$O_1$$ равноудален от указанных граней, то есть лежит на биссекторной плоскости двугранного угла c ребром $$AA_1$$, то есть на плоскости $$AA_1C_1C$$ (с учетом того, что $$ABCDA_1B_1C_1D_1$$ – куб).

Так первый шар касается граней $$ABCD,AA_1D_1D$$, то его центр $$O_1$$ равноудален от указанных граней, то есть лежит на биссекторной плоскости двугранного угла c ребром $$AD$$, то есть на плоскости $$AB_1C_1D$$ (с учетом того, что $$ABCDA_1B_1C_1D_1$$ – куб).

Но тогда точка $$O_1$$ лежит на прямой пересечения плоскостей $$AA_1C_1C,AB_1C_1D$$, то есть на $$AC_1$$ (естественно, раз шар находится внутри куба, то $$O_1$$ – точка отрезка $$AC_1$$).

Рассуждая аналогичным образом, приходим к тому, что и точка $$O_2$$ лежит на отрезке $$AC_1$$.

б) Очевидно, $$A_1C_1=13\sqrt2$$, $$AC_1=13\sqrt3$$. Очевидно, в силу симметрии, $$AO_1=C_1O_2$$ и $$AO_1=C_1O_2=\frac{13\sqrt3-2r}{2}$$, где $$r$$ – радиусы шаров.

Пусть, например, $$K_2$$ – точка касания второго шара с гранью $$A_1B_1C_1D_1$$ ($$K_2$$ принадлежит $$A_1C_1$$).

Треугольники $$AA_1C_1,O_2K_2C_1$$ подобны по двум углам, тогда $$\frac{AA_1}{O_2K_2}=\frac{AC_1}{O_2C_1}$$; $$\frac{13}{r}=\frac{13\sqrt2}{\frac{13\sqrt3-2r}{2}}$$; $$\frac{1}{r}=\frac{2\sqrt2}{13\sqrt3-2r}$$; $$2\sqrt2 r=13\sqrt3-2r$$; $$r(2\sqrt2+2)=13\sqrt3$$; $$r=\frac{13\sqrt3}{2\sqrt2+2}$$.

 

Задание 3035

Основанием пирамиды SABC является равносторонний треугольник ABC, длина стороны которого равна $$4\sqrt{2}$$ . Боковое ребро SC перпендикулярно плоскости основания и имеет длину 2.
а) Докажите, что угол между скрещивающимися прямыми, одна из которых проходит через точку S и середину ребра BC, а другая проходит через точку С и середину ребра AB равен 45°.
б) Найдите расстояние между этими скрещивающимися прямыми.

Ответ: $$\frac{2}{\sqrt{3}}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Введем ортогональную систему координат: $$CM=CB\cdot\sin60^{\circ}=4\sqrt{2}\cdot\frac{\sqrt{3}}{2}=2\sqrt{6}$$

$$\left.\begin{matrix}S(0;0;2)\\L(\sqrt{2};\sqrt{6};0)\end{matrix}\right\}$$ $$\Rightarrow$$ $$SL \left \{ \sqrt{2};\sqrt{6};-2 \right \}$$

$$\left.\begin{matrix}C(0;0;0)\\M(0;2\sqrt{6};0)\end{matrix}\right\}$$ $$\Rightarrow$$ $$CM\left\{0;2\sqrt{6};0\right\}$$

$$\cos(SL;CM)=\frac{|\sqrt{2}\cdot0+\sqrt{6}\cdot2\sqrt{6}+(-2)\cdot0|}{\sqrt{2+6+4}\cdot\sqrt{4\cdot6}}=$$

$$=\frac{2\sqrt{36}}{\sqrt{12}\cdot\sqrt{24}}=\frac{2\cdot6}{2\sqrt{3}\cdot2\sqrt{6}}=\frac{\sqrt{2}}{2}$$

$$\angle (SL;CM)=45^{\circ}$$ ч.т.д.

2) Пусть $$LK\parallel CM\Rightarrow d(SL;CM)=d(C;(SLK))$$

$$K(\sqrt{2}; 2\sqrt{6}; 0)$$ Пусть $$ax+by+cz+d=0$$ - уравнение $$(SLK)$$

$$\left\{\begin{matrix}0\cdot a+0\cdot b+2\cdot c+d=0\\\sqrt{2}a+\sqrt{6}b+0\cdot c+d=0\\\sqrt{2}a+2\sqrt{6}b+0\cdot c+d=0\end{matrix}\right.$$

$$b=0;c=-\frac{d}{2};a=-\frac{\sqrt{2}d}{2}$$ $$-\frac{\sqrt{2}d}{2}x+0y-\frac{d}{2}z+d=0$$ $$\Rightarrow$$<

$$-\frac{\sqrt{2}}{2}x+0y-\frac{1}{2}z+1=0$$

$$d(C;(SLK))=\frac{|ax_{0}+by_{0}+cz_{0}+d|}{\sqrt{a^{2}+b^{2}+c^{2}}}=$$<

$$=\frac{|-\frac{\sqrt{2}}{2}\cdot0+0\cdot0-\frac{1}{2}\cdot0+1|}{\sqrt{\frac{2}{4}+0+\frac{1}{4}}}=\frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}$$

 

Задание 3077

В прямоугольном параллелепипде ABCDA1B1C1D1 на ребре C1D взята точка К так, что KC1=3KD1
А) Докажите, что плоскость АСК делит диагональ BD1 в отношении 4:1, считая от точки В.
Б) Найдите расстояние от точки D до плоскости ACK, если известно, что АВ=4, ВС=3,
СС1=2.

Ответ: $$\frac{24\sqrt{181}}{181}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

А) Построим через К прямую $$a\parallel AC$$ ($$a\cap A_{1}D_{1}=M$$) $$\Rightarrow$$ (АМКС) - искомая плоскость 1) Построим ($$BB_{1}D_{1}D$$) $$\Rightarrow$$ HN - линия пересечения ($$BB_{1}D_{1}D$$) и (АМКС) Пусть $$HN\cap BD_{1}=0$$ $$\Rightarrow$$ доказать $$\frac{BO}{OD_{1}}=\frac{4}{1}$$ Пусть $$B_{1}D_{1}\cap C_{1}A_{1}=Z$$ 2) $$A_{1}C_{1}\parallel KM$$ $$\Rightarrow$$ $$\bigtriangleup MD_{1}K\sim \bigtriangleup A_{1}C_{1}D_{1}$$ $$\frac{D_{1}K}{D_{1}C_{1}}=\frac{D_{1}H}{D_{1}Z}=\frac{1}{4}$$ 3) $$\bigtriangleup BON\sim \bigtriangleup HOD_{1}$$ $$\Rightarrow$$ $$\frac{BN}{HD_{1}}=\frac{BO}{OD_{1}}$$ $$BN=ZD_{1}$$ $$\Rightarrow$$ $$\frac{ZD_{1}}{HD_{1}}=\frac{BO}{OD_{1}}=\frac{4}{1}$$ Ч.Т.Д Б) Введем ортогональную систему координат: пусть $$XA+BY+CZ+D=0$$ - уравнение (АМКС): $$A(0;4;0); C(3;0;0); K(3;3;2)$$ $$\left\{\begin{matrix}0\cdot a+4\cdot b+0\cdot c+d=0\\3a+0\cdot b+0\cdot c+d=0\\3a+3b+2c+d=0\end{matrix}\right.$$ $$\left\{\begin{matrix}4b+d=0\\3a+d=0\\3a+3b+2c+d=0\end{matrix}\right.$$ $$\left\{\begin{matrix}b=-\frac{d}{4}\\a=-\frac{d}{3}\\-d-\frac{3d}{4}2c+d=0\end{matrix}\right.$$ $$\left\{\begin{matrix}b=-\frac{d}{4}\\a=-\frac{d}{3}\\c=\frac{3d}{8}\end{matrix}\right.$$ $$-\frac{d}{3}x-\frac{d}{4}y+\frac{3d}{8}z+d=0$$ $$-\frac{1}{3}x-\frac{1}{4}y+\frac{3}{8}z+1=0$$ $$D(3;4;0)$$ $$d(D:(AMKC))=\frac{|ax_{0}+by_{0}+cz_{0}+d|}{\sqrt{a^{2}+b^{2}+c^{2}}}=$$ $$=\frac{|-\frac{1}{3}\cdot3+-\frac{1}{4}\cdot4+\frac{3}{8}\cdot0+1|}{\sqrt{\frac{1}{9}+\frac{1}{16}+\frac{9}{64}}}=$$ $$=\frac{|-1-1+1|}{\sqrt{\frac{1}{9}+\frac{13}{64}}}=$$ $$=\frac{1}{\sqrt{\frac{181}{9\cdot64}}}=$$ $$=\frac{3\cdot8}{\sqrt{181}}=\frac{24\sqrt{181}}{181}$$

 

Задание 3159

В правильной треугольной пирамиде SABC точка К – середина ребра АВ. На ребре SC взята точка М так, что SM : СМ = 1:3. 

а) Докажите, что прямая МК пересекает высоту SО пирамиды в её середине.  
б) Найдите расстояние между прямыми МК и АС, если известно, что АВ=6, SA=4. 
Ответ: $$\frac{3\sqrt{21}}{7}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 3205

В прямоугольном параллелепипеде ABCDA1B1C1D1 АВ=ВС=4, СС1=8. Точка К – середина ребра АВ, точка М – середина ребра ВС. Точка Р лежит на ребре DD1 так, что DP:PD1=3:5.
А) Докажите, что плоскость КМР перпендикулярна прямой DВ1.
Б) Найдите объем пирамиды, основанием которой является сечение параллелепипеда плоскостью КМР, а вершиной – точка D.

Ответ: 14
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 3249

В параллелепипеде АВСDA1B1C1D1 точка К – середина ребра АВ.
а) Докажите, что плоскость СКD1 делит объем параллелепипеда в отношении 7:17.
Б) Найдите расстояние от точки D до плоскости СКD1, если известно, что ребра АВ, АD и АА1 попарно перпендикулярны и равны соответственно 6, 4 и 6.

Ответ: $$\frac{24\sqrt{41}}{41}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

a) 1) C и K соединим, C и D1 соединим

2) т.к. $$(ABB_{1})\parallel(DCC_{1})$$ $$\Rightarrow$$ $$CD_{1}\parallel a$$, а через точку К $$a\cap AA_{1}=M$$ $$\Rightarrow$$ $$D_{1}$$ и М соединим $$\Rightarrow$$ $$CD_{1}MK$$ - сечение

3) Продолжим $$D_{1}M$$ и $$CK$$ до пересечения в Н.

4) Пусть $$DD_{1}=x$$ $$DC=y$$ $$AD=z$$ $$\Rightarrow$$ $$V_{ABCDA_{1}B_{1}C_{1}D_{1}}=x\cdot y\cdot z$$

$$V_{AMKDD_{1}C}=\frac{1}{3}AD(S_{AMK}+\sqrt{S_{AMK}\cdot S_{DD_{1}C}}+S_{DD_{1}C})$$

т.к. $$AK=\frac{1}{2}DC$$  и $$AK\parallel CD$$, $$CD_{1}\parallel KM$$ $$\Rightarrow$$ $$\bigtriangleup AMK\sim \bigtriangleup DD_{1}C$$

$$S_{DD_{1}C}=\frac{1}{2}x\cdot y$$ $$\Rightarrow$$ $$S_{AMK}=\frac{1}{4}S_{DD_{1}C}=\frac{1}{8}x\cdot y$$

$$V_{AMKDD_{1}C}=\frac{1}{3}z\cdot(\frac{1}{8}xy+\sqrt{\frac{1}{8}xy\cdot\frac{1}{2}xy}+\frac{1}{2}xy)=$$

$$=\frac{1}{3}z\cdot(\frac{1}{8}xy+\frac{1}{4}xy+\frac{1}{2}xy)=\frac{1}{3}z\cdot\frac{7}{8}xy=$$

$$={7}{24}xyz$$ $$\Rightarrow$$ $$V_{ocm}=xyz-\frac{7}{24}xyz=\frac{17}{24}xyz$$

5) $$\frac{V_{AMKDD_{1}C}}{V_{ocm}}=\frac{\frac{7}{24}xyz}{\frac{17}{24}xyz}=\frac{7}{17}$$

ч.т.д.

б) Вводим ортгональную систему координат:

$$C(6;0;0)$$

$$K(3;4;0)$$

$$D_{1}(0;0;6)$$

Пусть $$ax+by+cz+d=0$$ уравнение $$(CKD_{1})$$:

$$\left\{\begin{matrix}6a+0b+0c+d=0\\3a+4b+0c+d=0\\0a+0b+6c+d=0\end{matrix}\right.$$ $$\Leftrightarrow$$

$$\left\{\begin{matrix}6a+d=0\\3a+4b+d=0\\6c+d=0\end{matrix}\right.$$ $$\Leftrightarrow$$

$$\left\{\begin{matrix}a=-\frac{d}{6}\\-\frac{d}{6}+4b+d=0\\c=-\frac{d}{6}\end{matrix}\right.$$ $$\Leftrightarrow$$

$$\left\{\begin{matrix}a=-\frac{d}{6}\\b=-\frac{d}{8}\\c=-\frac{d}{6}\end{matrix}\right.$$

$$-\frac{d}{6}x-\frac{d}{8}y-\frac{d}{6}z+d=0$$

$$-\frac{1}{6}x-\frac{1}{8}y-\frac{1}{6}z+1=0$$

$$D(0;0;0)$$

$$d(D;(CKD_{1}))=\frac{|ax_{0}+by_{0}+cz_{0}+d|}{\sqrt{a^{2}+b^{2}+c^{2}}}=$$

$$=\frac{|-\frac{1}{6}\cdot0-\frac{1}{8}\cdot0-\frac{1}{6}\cdot0+1|}{\sqrt{\frac{1}{36}+\frac{1}{64}+\frac{1}{36}}}=$$

$$=\frac{1}{\sqrt{\frac{41}{64\cdot9}}}=\frac{3\cdot8}{\sqrt{41}}=\frac{24\sqrt{41}}{41}$$

 

Задание 3330

Площадь боковой поверхности правильной четырехугольной пирамиды SABCD с основанием ABCD равна 108, а площадь полной поверхности этой пирамиды равна 144.

а) Докажите, что угол между плоскостью SAC и плоскостью, проходящей через вершину S этой пирамиды, середину стороны АВ и центр основания, равен 450.
б) Найдите площадь сечения пирамиды плоскостью SAC. 
Ответ: 36
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 3377

Основание и высота правильной треугольной призмы ABCA1B1C1 равны AB=6, AA1=4.
а) Найдите угол между прямыми AB1 и B1C .
б) Найдите расстояние между прямыми A1B и B1C .

Ответ: а) $$\alpha = arccos(\frac{1}{26});$$ б) 2,4
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 

Задание 3425

В одном основании прямого кругового цилиндра с высотой 12 и радиусом основания 6 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.

а) Докажите, что диагонали этого сечения равны между собой.
б) Найдите объём пирамиды CABNM.
Ответ: $$144+72\sqrt{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

а)

1) Опустим $$BN\perp$$ основанию $$\Rightarrow$$ $$BN\perp CD$$

2) Проведем $$MN\parallel AB$$ $$\Rightarrow$$ $$CD\parallel MN$$ $$\Rightarrow$$ $$(ABNM)$$ - ИСКОМАЯ

3) т.к. $$MN\parallel AB$$ и $$AB=MN$$ $$\Rightarrow$$ ABNM - прямоугольник $$\Rightarrow$$ $$MB=AN$$ ч.т.д.

б) $$V_{CABNM}=\frac{1}{3}CR\cdot S_{ABNM}=\frac{1}{3}(CO+OR)\cdot AB\cdot BN$$

$$AB=CO=6$$; $$BN=12$$

 из $$\bigtriangleup OMN$$ - равносторонний:

$$OR=\frac{\sqrt{3}}{2}OM$$ $$(\angle M=60^{\circ})$$ $$\Rightarrow$$ $$OR=\frac{\sqrt{3}}{2}\cdot6=3\sqrt{3}$$

$$V_{CABNM}=\frac{1}{3}\cdot(6+3\sqrt{3})\cdot6\cdot12=144+72\sqrt{3}$$

 

Задание 3662

В кубе $$ABCDA_{1}B_{1}C_{1}D_{1}$$ точка О1 – центр квадрата АВСD, точка О2 – центр квадрата $$CC_{1}D_{1}D$$

а) Докажите, что прямые А1О1 и В1О2 – скрещивающиеся.
б) Найдите расстояние между прямыми А1О1 и В1О2, если ребро куба равно 2.
Ответ: $$\frac{2\sqrt{3}}{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Опустим $$O_{2}M\perp C_{1}D_{1}$$ $$\Rightarrow$$ $$B_{1}M$$ - проекция $$B_{1}O_{2}$$ на $$(A_{1}B_{1}C_{1}D_{1})\Rightarrow(B_{1}MO_{2})$$ плоскость $$B_{1}O_{2}$$; достроим её до $$(B_{1}MM_{1}B)$$

2) Опустим $$O_{1}L\perp AD$$ $$\Rightarrow$$ $$A_{1}L$$ - проекция $$A_{1}O_{1}$$ на $$(AA_{1}D_{1}D)\Rightarrow(A_{1}O_{1}L)$$ плоскость $$A_{1}O_{1}$$; достроим её до $$(A_{1}LL_{1}B_{1})$$

3) $$BM_{1}\cap LL_{1}=H$$ $$B_{1}$$ - общая $$\Rightarrow$$ $$B_{1}H$$ -линия пересечения $$(A_{1}LL_{1}B_{1})$$ и $$(B_{1}MM_{1}B)$$ $$\Rightarrow$$ $$A_{1}O_{1}\cap(B_{1}MM_{1}B)$$ по $$B_{1}H$$ $$\Rightarrow$$ $$A_{1}O_{1}$$ не пересекает $$B_{1}O_{2}$$ и $$A_{1}O_{1}$$ не параллельна $$B_{1}O_{2}$$ $$\Rightarrow$$ $$B_{1}O_{2}$$ и $$A_{1}O_{1}$$ - скрещивающиеся

б) 1) Введем ортогональную систему координат как на рисунке: $$B_{1}(0;0;2)$$; $$O_{2}(2;1;1)$$; $$A_{1}(0;2;2)$$

2) Пусть $$B_{1}L_{2}\parallel A_{1}L$$, тогда $$(B_{1}O_{2}L_{2})\parallel A_{1}L$$, $$d(A_{1}L; B_{1}O_{2})=d((B_{1}O_{2}L_{2});A_{1})$$

$$L_{2}(1;-1;0)$$

3) Пусть $$ax+by+cz+d=0$$ - уравнение $$(B_{1}O_{2}L_{2})$$

$$\left\{\begin{matrix}0\cdot x+0\cdot y+2z+d=0\\2x+1y+1z+d=0\\1x+(-1)\cdot y+0\cdot z+d=0\end{matrix}\right.$$

$$\left\{\begin{matrix}2z+d=0\\2x+y+z+d=0\\x-y+d=0\end{matrix}\right.$$

$$\left\{\begin{matrix}z=-\frac{d}{2}\\3x+z+2d=0\\x-y+d=0\end{matrix}\right.$$

$$3x-0,5d+2d=0$$

$$3x=-1,5d$$

$$x=-0,5d$$

$$-y+0,5d=0$$

$$y=0,5d$$

$$d((B_{1}O_{2}L_{2});A_{1})=\frac{|ax_{0}+by_{0}+cz_{0}+d|}{\sqrt{a^{2}+b^{2}+c^{2}}}=$$

$$=\frac{|1\cdot0-1\cdot2+1\cdot2-2}{\sqrt{1^{2}+(-1)^{2}+1^{2}}}=\frac{2}{\sqrt{3}}=\frac{2\sqrt{3}}{3}$$

 

Задание 3861

Основание пирамиды DABC - прямоугольный треугольник ABC с прямым углом С. Высота пирамиды проходит через середину ребра AC, а боковая грань ACD - равносторонний треугольник.

а) Докажите, что сечение пирамиды плоскостью, проходящей через ребро BC и произвольную точку M ребра AD, - прямоугольный треугольник.
б) Найдите расстояние от вершины D до этой плоскости, если M - середина ребра AD, а высота пирамиды ровна 6.
Ответ: $$2\sqrt{3}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

 

а) 1) Пусть $$DH$$ - высота; $$\Rightarrow DH\perp ABC$$

2) Пусть $$MC\cap DH=N\Rightarrow NH\perp AC$$

$$\Rightarrow CH$$ - проекция $$NC$$ на $$(ABC)$$

3) т.к. $$AC\perp CB$$, то по теореме о трех перпендикулярах $$NC\perp CB$$

$$\Rightarrow$$ $$MC\perp CB$$

$$\Rightarrow\bigtriangleup MCB$$ - прямоугольный

б) 1) т.к. $$AC\perp CB$$ и $$CB\perp MC$$ $$\Rightarrow CB\perp(ADC)$$

$$\Rightarrow(BCM)\perp(ACD)$$

$$\Rightarrow$$ расстояние от D до $$(CBM)$$ - перпендикуляр $$DL\in(ADC)$$

2) т.к. $$\bigtriangleup ACD$$ - равносторонний и $$AM-MD, то $$CM\perp AD$$ 

$$\Rightarrow DM$$  - искомое расстояние

3) $$DC=\frac{DH}{\sin C}=\frac{6}{\sin60^{\circ}}=\frac{12}{\sqrt{3}}=4\sqrt{3}$$

$$\Rightarrow$$ $$MD=\frac{1}{2}AD=\frac{1}{2}DC=2\sqrt{3}$$

 

Задание 4018

Куб целиком находится в правильной треугольной пирамиде SABC с вершиной S так, что одна грань куба принадлежит основанию, одно ребро целиком принадлежит грани SBC, а грани SAB и SAC содержат по одной вершине куба. Известно, что ребро АВ в 2 раза больше высоты пирамиды.

А) Докажите, что плоскость, проходящая через вершины куба, принадлежащие граням SAB и SAC, и вершину пирамиды, перпендикулярна плоскости ASD, где D – середина стороны ВС.
Б) Найдите отношение объемов пирамиды и куба.
Ответ: $$\frac{(2+3\sqrt{3})^{3}}{72}$$
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть

1) Пусть h - высота пирамиды, тогда $$AB=CB=AC=2h$$ $$\Rightarrow$$

$$S_{ABC}=\frac{1}{2}\cdot2h\cdot2h\cdot\frac{\sqrt{3}}{2}=\sqrt{3}h^{2}$$ $$\Rightarrow$$

$$V_{ABCD}=\frac{1}{3}\cdot h\cdot\sqrt{3}h^{2}=\frac{\sqrt{3}}{3}h^{3}$$

2) Пусть KL - ребро куба; $$KL\in(SBC)$$;

$$(NMLK)\parallel(N_{1}M_{1}L_{1}K_{1})\cap SBC\Rightarrow KL\parallel CB$$;

аналогично: $$C_{1}B_{1}\parallel CB$$; $$A_{1}B_{1}\parallel B$$;$$A_{1}C_{1}\parallel AC$$

3) Пусть ребро куба - x $$\Rightarrow$$

$$d((ABC);(A_{1}B_{1}C_{1}))=x$$ - расстояние $$\Rightarrow$$

высота $$SA_{1}B_{1}C_{1}=h-x$$

4) Пусть $$SO_{1}$$- высота $$SABC$$, $$SO_{2}$$ - высота $$SA_{1}B_{1}C_{1}$$

$$\bigtriangleup SO_{2}B_{1}\sim\bigtriangleup SO_{1}B\Rightarrow\frac{SB_{1}}{SB}=\frac{SO_{2}}{SO_{1}}=\frac{h-x}{h}$$

$$\bigtriangleup SB_{1}A_{1}\sim\bigtriangleup SBA\Rightarrow\frac{A_{1}B_{1}}{AB}=\frac{SB_{1}}{SB}=\frac{h-x}{h}$$ $$\Rightarrow$$

$$A_{1}B_{1}=AB\cdot\frac{h-x}{h}=2h\cdot\frac{h-x}{h}=2(h-x)$$

5) $$\bigtriangleup NMA_{1}$$ - правильный; $$NA_{1}=NM=x$$ $$\Rightarrow$$

из $$C_{1}NK$$: $$C_{1}N=\frac{NK}{\sin 60}=\frac{2x}{\sqrt{3}}$$ $$\Rightarrow$$

$$C_{1}A_{1}=C_{1}N+NA_{1}=x(1+\frac{2}{\sqrt{3}})$$

6) $$\bigtriangleup A_{1}B_{1}C_{1}$$ - правильный  $$\Rightarrow$$

$$2(h-x)=x(1+\frac{2}{\sqrt{3}})$$

$$2h-2x=x(1+\frac{2}{\sqrt{3}}$$ $$\Rightarrow$$

$$x(3+\frac{2}{\sqrt{3}})=2h$$ $$\Rightarrow$$

$$x=\frac{2h\sqrt{3}}{3\sqrt{3}+2}$$ $$\Rightarrow$$

$$V_{KLMNK_{1}L_{1}N_{1}M_{1}}=x^{3}=(\frac{2h\sqrt{3}}{3\sqrt{3}+2})^{3}$$

7) $$\frac{V_{ABCD}}{V_{KLMNK_{1}L_{1}N_{1}M_{1}}}=\frac{\sqrt{3}h^{3}}{3}\cdot\frac{(2+3\sqrt{3})^{3}}{2^{3}h^{3}\sqrt{3}^{3}}=$$

$$=\frac{(2+3\sqrt{3})^{3}}{9\cdot8}=\frac{(2+3\sqrt{3})^{3}}{72}$$

Задание 4121

В основании прямой призмы ABCA1B1C1 лежит равнобедренный прямоугольный треугольник ABC с гипотенузой AB, равной $$8\sqrt{2}$$. Высота призмы равна 6. Найдите угол между прямыми AC1 и CB1.

Ответ:

Задание 4122

Длина ребра правильного тетраэдра ABCD равна 1. Найдите угол между прямыми DM и CL, где M — середина ребра BC, M — середина ребра AB

Ответ:

Задание 4123

Сторона основания правильной треугольной призмы ABCA1B1C1 равна 8. Высота этой призмы равна 6. Найти угол между прямыми CA1 и AB1.

Ответ: