Перейти к основному содержанию

ЕГЭ Профиль

ЕГЭ (профиль) / Начала теории вероятностей

 
Аналоги к этому заданию:

Задание 11457

На приеме у врача находится 15 больных, 5 из которых больны коронавирусом. Определить вероятность того, что 3 наугад выбранных пациента не больны коронавирусом? Результат округлить до тысячных.

Ответ:
 
Аналоги к этому заданию:

Задание 11410

Известно, что в среднем 95% выпускаемой продукции удовлетворяет стандарту. Упрощенная схема контроля признает пригодной продукцию с вероятностью 0,98, если она стандартна, и с вероятностью 0,06, если она нестандартна. Определить вероятность того, что взятое наудачу изделие пройдет упрощенный контроль?

Ответ:
 
Аналоги к этому заданию:

Задание 11366

Гигрометр измеряет влажность в помещении картинной галереи. Вероятность того, что влажность окажется выше 40%, равна 0,78. Вероятность того, что влажность - окажется ниже 55 %, равна 0,68. Найдите вероятность того, что влажность находится в пределах от 40 % до 55 %.

Ответ:
 
Аналоги к этому заданию:

Задание 11331

На фабрике керамической посуды 20% произведенных тарелок имеют дефект. При контроле качества продукции выявляется 70% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Ответ округлите до сотых.

Ответ:
 
Аналоги к этому заданию:

Задание 11265

Производительности трех станков, обрабатывающих одинаковые детали, относятся как 1:3:6. Из нерассортированной партии обработанных деталей взяты наудачу две. Какова вероятность того, что ровно одна из них обработана на 3‐м станке?

Ответ: 0,48
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 10990

При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последующем - 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?
Ответ: 5
Скрыть Вероятность не уничтожения цели тогда менее $$\left(1-0,98\right)=0,02.$$ Промах при первом выстреле: $$1-0,4=0,6.$$ Далее $$1-0,6=0,4.$$ Тогда через n выстрелов вероятность не уничтожения: $$0,6\cdot {0,4}^{n-1}<0,02\to {0,4}^n<\frac{0,02\cdot 0,4}{0,6}\approx 0,01\to n=5$$ $$({0,4}^5=0,01204<0,01(3))$$
 
Аналоги к этому заданию:

Задание 10811

65 студентов отправляются на экскурсию. Их случайным образом рассаживают в пять микроавтобусов по 13 человек в каждый. Какова вероятность того, что подруги Галя и Таня окажутся в одном микроавтобусе?

Ответ: 0,1875
Скрыть Вероятность, что Галя попадет в один из пяти автобусов $$\frac{13}{65}$$, что туда попадет Таня $$\frac{12}{64}$$ (12 мест, 64 претендента). Т.е. вероятность обеим попасть в один автобус из 5-ти: $$\frac{13}{65}\cdot \frac{12}{64}=0,0375$$. Таких автобусов пять, поэтому вероятность оказаться в одном автобусе $$0,0375\cdot 5=0,1875$$.
 
Аналоги к этому заданию:

Задание 10543

Две команды проводят три встречи. Изначально вероятности их побед одинаковые. Однако, после каждой победы вероятность выигрыша повышается на 0,1 (и уменьшается в случае проигрыша). Какова вероятность, что команда Б выиграет хотя бы одну встречу? Ничьей быть не может.
Ответ: 0,79
Скрыть

Событие A «выиграет хотя бы одну встречу» противоположно событию B «проиграет все встречи». При этом вероятность последующего проигрыша увеличивается. Тогда $$P\left(B\right)=0,5*0,6*0,7=0,21\to P\left(A\right)=1-P\left(B\right)=0,79$$

 
Аналоги к этому заданию:

Задание 10518

В среднем из 3000 садовых насосов, поступивших в продажу, 12 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

Ответ:
Скрыть

Найдем вероятность противоположного события A: "насос подтекает": $$P(A)=\frac{12}{3000}=0,004$$. Тогда вероятность события "насос не подтекает": $$P(A_{1})=1-P(A)=1-0,004=0,996$$

 
Аналоги к этому заданию:

Задание 10487

В зале театра имеется 10 рядов по 20 мест в каждом. Какова вероятность, что в случайно взятом билете номер ряда и номер места окажутся равны?

Ответ: 0,05
 
Аналоги к этому заданию:

Задание 10477

Магазин покупает сливочное масло у двух молокозаводов. 40% масла первого и 20% масла второго молокозавода имеет жирность 80%. Всего жирность 80% имеет 35% закупленного масла. Найдите вероятность того, что масло, купленное в магазине, произведено первым молокозаводом.

Ответ: 0,75
 
Аналоги к этому заданию:

Задание 10381

Участники жеребьевки тянут из ящика жетоны с номерами от 1 до 100. Найдите вероятность того, что номер первого наудачу извлеченного жетона не содержит цифры 5.

Ответ: 0,81
 
Аналоги к этому заданию:

Задание 10277

Из шести букв разрезной азбуки составлено слово «АНАНАС». Ребенок, не умеющий читать, рассыпал эти буквы, а затем собрал в произвольном порядке. Найти вероятность того, что у него снова получилось слово «АНАНАС». Ответ округлите до тысячных.

Ответ: 0,017
 
Аналоги к этому заданию:

Задание 10251

Бросаются одновременно две игральные кости. Найдите вероятность того, что сумма выпавших очков будет больше, чем их произведение. Ответ округлите до сотых.

Ответ: 0,31
 
Аналоги к этому заданию:

Задание 10204

На пяти карточках написаны цифры 1, 2, 3, 4, 5. Вынимается одна карточка, стоящее на ней число записывается, карточка возвращается обратно. Карточки перемешиваются, затем вынимается еще одна карточка, стоящее на ней число записывается. Найдите вероятность того, что второе записанное число больше первого.

Ответ: 0,4
 
Аналоги к этому заданию:

Задание 10183

Петя и Таня независимо друг от друга загадывают по одной цифре. С какой вероятностью сумма этих цифр окажется больше 16?

Ответ: 0,03
Аналоги к этому заданию:

Задание 10158

В урне находится 6 шаров: 1 белый, 2 красных и 3 черных. Наугад вытаскивают 3 шара. Какова вероятность того, что среди вытащенных шаров ровно 1 будет черным?

Ответ: 0,45
 
Аналоги к этому заданию:

Задание 10143

Даны три цифры {0;1;3}. Найдите вероятность того, что эти цифры, расположенные в случайном порядке, составят нечетное число, большее числа 10. (Число не может начинаться с нуля)

Ответ: 0,5
 
Аналоги к этому заданию:

Задание 10124

В первой коробке 20 ламп, из них 18 стандартных. Во второй коробке – 10 ламп, из них 9 стандартных. Из второй коробки наудачу взята лампа и переложена в первую. Найдите вероятность того, что лампа, наудачу извлеченная из первой коробки, будет стандартной.

Ответ: 0,9
 
Аналоги к этому заданию:

Задание 10105

Наугад выбирают два числа из отрезка [0;1]. Найдите вероятность того, что их сумма заключена между 1/4 и 1.

Ответ: 0,46875
 
Аналоги к этому заданию:

Задание 10086

На плоскости нарисованы две концентрические окружности, радиусы которых 3 см и 5 см. Какова вероятность того, что точка, брошенная наудачу в больший круг, попадет в кольцо, образованное этими окружностями?

Ответ: 0,64
 
Аналоги к этому заданию:

Задание 10063

На международную конференцию собирается приехать 21 участник, в том числе два участника от России. Всех участников намерены поселить в одноместных номерах трехэтажной гостиницы, имеющей по 7 номеров на каждом этаже. С какой вероятностью оба российских участника конференции будут жить на одном этаже?

Ответ: 0,3
 
Аналоги к этому заданию:

Задание 10042

В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,5 погода завтра будет такой же, как и сегодня. Сегодня 23 февраля, погода в Волшебной стране хорошая. Найдите вероятность того, что 8 марта в Волшебной стране будет отличная погода (Считать, что 2020‐м году в феврале 29 дней).

Ответ: 0,5
 
Аналоги к этому заданию:

Задание 9938

Пенсионер гуляет по дорожкам парка. На каждой развилке он наудачу выбирает следующую дорожку, не возвращаясь обратно. Схема дорожек показана на рисунке. Пенсионер начинает прогулку в точке А. Найдите вероятность того, что он придет в точку G.

Ответ:
 
Аналоги к этому заданию:

Задание 9891

Из полной колоды карт (52 листа) вынимают сразу две карты. Одну из них смотрят – она оказалась дамой. После этого две вынутые карты перемешивают и одну из них берут наугад. Найти вероятность того, что она окажется тузом. Результат округлите до сотых.

Ответ:
 
Аналоги к этому заданию:

Задание 9866

В урне 5 белых и 6 черных шаров. Из урны вынули один шар и, не глядя, отложили в сторону. После этого из урны взяли еще один шар. Он оказался белым. Найдите вероятность того, что первый шар, отложенный в сторону, ‐ тоже белый.

Ответ: 0,4
 
Аналоги к этому заданию:

Задание 9791

На конференцию приехали учёные из трёх стран: 7 из Сербии, 3 из России и 2 из Дании. Каждый из них делает на конференции один доклад. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что десятым окажется доклад учёного из России.

Ответ: 0,25
 
Аналоги к этому заданию:

Задание 9771

Монета бросается до появления первого герба. Какова вероятность того, что потребуется четное число бросков? Ответ округлите до сотых.

Ответ: 0,33
 
Аналоги к этому заданию:

Задание 9670

Вероятность хотя бы одного попадания в мишень стрелком при трех выстрелах равна 0,875. Какова вероятность попадания при одном выстреле?

Ответ: 0,5
 
Аналоги к этому заданию:

Задание 9651

В группе туристов 20 человек. Их вертолётом доставляют в труднодоступный район, перевозя по 4 человека за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист В., входящий в состав группы, полетит первым рейсом вертолёта.

Ответ: 0,2
 
Аналоги к этому заданию:

Задание 9623

Только один из 9 ключей подходит к замку. Какова вероятность того, что придется опробовать 5 ключей для открывания замка? Ответ округлите до сотых.

Ответ: 0,11
 
Аналоги к этому заданию:

Задание 9518

На уроке физкультуры 26 школьников, из них 12 девочек, остальные — мальчики. По сигналу учителя физкультуры все быстро выстраиваются в одну шеренгу в случайном порядке. Найдите вероятность того, что справа в шеренге первые двое окажутся мальчиками.

Ответ: 0,28
 
Аналоги к этому заданию:

Задание 9498

Клиент получает в банке кредитную карту. Три последние цифры номера карты случайные. Какова вероятность того, что эти последние три цифры идут подряд в порядке убывания, например 876 или 432?

Ответ: 0,008
 
Аналоги к этому заданию:

Задание 9478

По отзывам покупателей Пётр Петрович оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,8. Вероятность того, что этот товар доставят из магазина Б, равна 0,95. Пётр Петрович заказал товар сразу в обоих магазинах. Считая, что интернет- магазины работают независимо друг от друга, найдите вероятность того, что оба магазина доставят товар.

Ответ: 0,76
 
Аналоги к этому заданию:

Задание 9373

На чемпионате по прыжкам в воду выступают 40 спортсменов, среди них 3 прыгуна из Голландии и 6 прыгунов из Аргентины. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что тринадцатым будет выступать прыгун из Аргентины.

Ответ:
 
Аналоги к этому заданию:

Задание 9353

В группе туристов 12 человек. С помощью жребия они выбирают трёх человек, которые должны идти в село в магазин за продуктами. Какова вероятность того, что турист Д., входящий в состав группы, пойдёт в магазин?

Ответ: 0,25
 
Аналоги к этому заданию:

Задание 9333

В треугольнике АВС на сторонах АВ и ВС случайным образом выбираются точки А1 и С1 так, что отрезок А1С1 оказывается параллелен стороне АС. Найдите вероятность того, что длина отрезка А1С1 окажется больше 3, если АС=5.

Ответ: 0,4
 
Аналоги к этому заданию:

Задание 9236

Из ящика, в котором лежат фломастеры, не глядя достали два фломастера. Найдите вероятность того, что эти фломастеры оказались одного цвета, если известно, что в ящике 12 синих и 13 красных фломастеров.

Ответ:
 
Аналоги к этому заданию:

Задание 9150

Перед началом первого тура чемпионата по теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 51 спортсмен, среди которых 14 спортсменов из России, в том числе Т. Найдите вероятность того, что в первом туре Т. будет играть с каким-либо спортсменом из России.

Ответ:
 
Аналоги к этому заданию:

Задание 9138

Иван Петрович регистрирует автомобиль в ГИБДД и получает новый номер. Все три цифры нового номера случайны, но номер 000 не разрешен. Раньше номер автомобиля у Ивана Петровича был 769. Найдите вероятность того, что при случайном выборе нового номера он будет записан теми же тремя цифрами (в любом порядке). Ответ округлите до тысячных.

Ответ: 0,006
 
Аналоги к этому заданию:

Задание 9101

В коробке 8 чёрных и 5 белых шаров. Случайным образом достают 6 шаров. Во сколько раз событие «среди выбранных шаров ровно четыре чёрных» более вероятно, чем событие «среди выбранных шаров ровно пять чёрных»?

Ответ:
 
Аналоги к этому заданию:

Задание 9055

Вероятность того, что новый фен прослужит больше года, равна 0,97. Вероятность того, что он прослужит больше двух лет, равна 0,88. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.

Ответ:
 
Аналоги к этому заданию:

Задание 9034

Главный вход в здание Российского заборостроительного университета имеет несколько дверей. С целью подчеркнуть важность и незаменимость своей работы, сотрудники частного охранного предприятия (ЧОП), дежурящие в университете, ежедневно запирают часть из дверей, делая это в случайном порядке и не вешая никаких объявлений. Согласно статистике, собранной сотрудниками ЧОП, в закрытые двери ломится 90% докторов наук, 60% кандидатов наук, 20% студентов и 50% остальных посетителей. Известно, что среди всех людей, входящих в здание, студентов ‐ 80%, кандидатов наук – 5%, докторов наук – 1%. Какова вероятность того, что человек, входящий в здание университета, выберет незапертую дверь?

Ответ: 0,731
 
Аналоги к этому заданию:

Задание 8902

Два автомобилиста, независимо друг от друга, выезжают из пункта А в пункт В. Навигатор предлагает каждому из них 8 равноценных маршрутов, и автомобилисты выбирают маршрут случайным образом. Найдите вероятность того, что автомобилисты выберут различные маршруты.

Ответ:
Аналоги к этому заданию:

Задание 8882

Два автомобилиста, независимо друг от друга, выезжают из пункта А в пункт В. Навигатор предлагает каждому из них 5 равноценных маршрутов, и автомобилисты выбирают маршрут случайным образом. Найдите вероятность того, что автомобилисты выберут один и тот же маршрут.

Ответ: 0,2
 
Аналоги к этому заданию:

Задание 8862

За десять минут по дороге мимо инспектора ДПС Кулебякина проезжают 50 автомобилей такси, из них 30 желтых и 20 белых. Среди этих машин 15 автомобилей «Хюндай», 15 – «Фольксваген Поло», 10 – «Рено» и 10 – «Мерседес». Считая, что цвет машины не зависит от ее марки, найдите, какова вероятность того, что случайным образом остановленным Кулебякиным такси будет желтый «Рено».

Ответ: 0,12
Аналоги к этому заданию:

Задание 8788

На заводе выпускают насосы для колодцев, из них 3 % выходят со сборочной линии со скрытым дефектом. При контроле качества продукции выявляется 90 % дефектных насосов. Остальные насосы поступают в продажу. Найдите вероятность того, что произведённый насос окажется в продаже.

Ответ: 0,973
Аналоги к этому заданию:

Задание 8769

На заводе делают электрические лампочки. 5 % всех изготовленных лампочек неисправны. Система контроля качества выявляет все неисправные лампочки, но по ошибке бракует еще 1 % исправных лампочек. Все забракованные лампочки отправляются в переработку, а остальные — в продажу. Найдите вероятность того, что случайно выбранная изготовленная лампочка отправится в переработку.

Ответ: 0,0595
Аналоги к этому заданию:

Задание 8750

Игральную кость бросают дважды. Найдите вероятность того, что произведение выпавших очков делится на 3. Ответ округлите до тысячных.

Ответ: 0,556
Аналоги к этому заданию:

Задание 8731

Правильную игральную кость бросают дважды. Известно, что сумма выпавших очков больше 8. Найдите вероятность события «при втором броске выпало 6 очков».

Ответ: 0,4
Аналоги к этому заданию:

Задание 8708

Всего в группе туристов 51 человек, в том числе Иван и Егор. Группу случайным образом делят на три подгруппы по 17 человек для посадки в три автобуса. Известно, что Иван оказался в третьем автобусе. Какова вероятность того, что при этом условии Егор окажется в первом автобусе?

Ответ: 0,34
Аналоги к этому заданию:

Задание 8688

Всего в группе туристов 21 человек, в том числе Женя и Саша. Группу случайным образом делят на три подгруппы по 7 человек для посадки в три микроавтобуса. Какова вероятность того, что Женя и Саша случайно окажутся в одном микроавтобусе?

Ответ: 0.3
 
Аналоги к этому заданию:

Задание 8687

На клетчатой бумаге с размером клетки 1x1 изображена трапеция. Найдите её площадь.

Ответ: 28
 
Аналоги к этому заданию:

Задание 8671

Студент Ипполит Кроликов хочет пригласить свою одногруппницу Сюзанну Зайцеву пойти с ним в ночной клуб. Вероятность того, что Сюзанна примет первое предложение равна 0,5. Однако вероятность того, что Сюзанна согласится со второго раза равна уже 0,6, а с третьего (и всех последующих) – 0,7. Сколько раз Кроликову надо приглашать Сюзанну, чтобы она согласилась с вероятностью, большей, чем 0,98?

Ответ: 4
 
Аналоги к этому заданию:

Задание 8333

Хакер Zero достал с антресоли свой старый компьютер на базе 286 процессора, но не смог его запустить. Протестировав все 16‐битные регистры процессора, он выяснил, что вероятность ошибки записи в один из битов регистра составляет 10‐1, а вероятность ошибки чтения, независимо от ошибки записи, ‐ 10‐2. Какова вероятность получить ошибку в бите регистра, если записанный с ошибкой, а потом прочитанный с ошибкой бит даёт правильный результат?

Ответ: 0,108
 
Аналоги к этому заданию:

Задание 8315

Профессор Российского заборостроительного университета Аполлон Иванович подсчитал, что Сюзанна Зайцева отсутствует на его лекциях с вероятностью 0,7, а Виолетта Волкова ‐ с вероятностью 0,8 Вероятность того, что обе девушки присутствуют на лекции равна 0,12. Какова вероятность того, что на следующую лекцию к Аполлону Ивановичу не придет ни Сюзанна, ни Виолетта?

Ответ: 0,62
 
Аналоги к этому заданию:

Задание 8296

Таксист Рушан заметил, что 70% блондинок, которые являются его пассажирами расплачиваются наличными, а из всех остальных пассажиров только 40% оплачивают поездку наличными. А всего наличными платят 55% пассажиров. Какова вероятность того, что пассажиркой Рушана будет блондинка?

Ответ: 0,5
 
Аналоги к этому заданию:

Задание 8277

На первый курс экономического факультета Российского заборостроительного университета было зачислено 45 человек, в том числе Сюзанна Зайцева и Виолетта Волкова. Студентов первого курса распределили по группам численностью 20 и 25 человек случайным образом. Найдите вероятность того, что Сюзанна и Виолетта окажутся в одной группе. Ответ округлите до тысячных.

Ответ: 0,495
 
Аналоги к этому заданию:

Задание 8258

Лейтенант ДПС Кулебякин останавливает для проверки исключительно автомобили марок «Мерседес» и «БМВ». Если водитель не пристегнут ремнем безопасности, Кулебякин выписывает штраф. Водители автомобилей «Мерседес» пристегиваются ремнем безопасности с вероятностью 0,2, а водители автомобилей «БМВ» ‐ с вероятностью 0,1. Кулебякин остановил 20 автомобилей, из которых оказалось 15 Мерседесов. Какова вероятность быть оштрафованным для выбранного наугад водителя одного из этих 20‐ти автомобилей?

Ответ: 0,825
Скрыть Водитель в Мерседесе не пристегивается с вероятностью: $$1-0,2=0,8$$. Вероятность остановить Мерседес составляет $$\frac{15}{20}=0,75$$, при этом вероятность остановить Мерседес с непристегнутым водителем: $$P(A)=0,75*0,8=0,6$$ Водитель в БМВ не пристегивается с вероятностью: $$1-0,1=0,9$$. Вероятность остановить БМВ составляет $$\frac{5}{20}=0,25$$, при этом вероятность остановить БМВ с непристегнутым водителем: $$P(B)=0,25*0,9=0,225$$ Тогда вероятность выписать штраф случайному водителю: $$P(A)+P(B)=0,6+0,225=0,825$$
 
Аналоги к этому заданию:

Задание 8227

Взяв пассажира в аэропорт, таксист Рушан быстро прикинул в уме, что при текущей загруженности маршрута вероятность успеть к началу регистрации на рейс равна 0,9, если ехать без остановок. Однако на пути в аэропорт есть пост ГИБДД, на котором Рушана могут остановить для проверки документов с вероятностью 0,5. В таком случае вероятность успеть вовремя будет равна 0,7. Какова вероятность успеть к началу регистрации при поездке по этому маршруту?

Ответ: 0,8
Скрыть

Вероятность, что таксиста остановят, составляет 0,5, следовательно, вероятность того, что не остановят (противоположное событие) : 1-0,5=0,5

Успеть он может в двух случаях:

  • его остановили и он успел: 0,5*0,7=0,35
  • его не остановили и он успел: 0,5*0,9=0,45

Тогда вероятность успеть в аэропорт: 0,35+0,45=0,8

 
Аналоги к этому заданию:

Задание 7933

В классе 21 ученик, среди них два друга – Коля и Толя. На уроке физкультуры класс случайным образом разбивают на 3 равных группы. Найдите вероятность того, что Коля и Толя попали в одну группу.

Ответ: 0,3
Аналоги к этому заданию:

Задание 6654

Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,7, а для второго – 0,8. Найти вероятность того, что при одном залпе в мишень попадает только один из стрелков

Ответ: 0,38
Скрыть

Первый попал, второй - нет: $$0,7*0,2=0,14$$

Первый нет, второй да: $$0,3*0,8=0,24$$

Вероятность, что попадет только один : $$P=0,14+0,24=0,38$$

Аналоги к этому заданию:

Задание 6606

В барабане револьвера находятся 4 патрона из шести в произвольном порядке. Барабан раскручивают, после чего нажимают на спусковой крючок два раза. Найти вероятность двух осечек. Результат округлите до сотых.

Ответ: 0,07
Скрыть

Вероятность первой осечки: $$\frac{2}{6}=\frac{1}{3}$$

Второй осечки:$$\frac{1}{5}$$ (1 пуста и 5 оставшихся)

Вероятно двух осечек подряд : $$P=\frac{1}{3}*\frac{1}{5}=\frac{1}{15}\approx 0,07$$

Аналоги к этому заданию:

Задание 5763

В соревновании по биатлону участвуют спортсмены из 25 стран, одна из которых ― Россия. Всего на старт вышло 60 участников, из которых 6 ― из России. Порядок старта определяется жребием, стартуют спортсмены друг за другом. Какова вероятность того, что десятым стартовал спортсмен из России?

Ответ:
Аналоги к этому заданию:

Задание 5762

Проводится жеребьёвка Лиги Чемпионов. На первом этапе жеребьёвки восемь команд, среди которых команда «Барселона», распределились случайным образом по восьми игровым группам — по одной команде в группу. Затем по этим же группам случайным образом распределяются еще восемь команд, среди которых команда «Зенит». Найдите вероятность того, что команды «Барселона» и «Зенит» окажутся в одной игровой группе.

Ответ:
Аналоги к этому заданию:

Задание 5761

Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «А = сумма очков равна 5»?

Ответ:
Аналоги к этому заданию:

Задание 2260

В сред­нем из 100 кар­ман­ных фо­на­ри­ков, по­сту­пив­ших в про­да­жу, во­семь не­ис­прав­ных. Най­ди­те ве­ро­ят­ность того, что вы­бран­ный на­уда­чу в ма­га­зи­не фо­на­рик ока­жет­ся ис­пра­вен.

Ответ: 0,92
Аналоги к этому заданию:

Задание 2259

В ма­га­зи­не канц­то­ва­ров продаётся 100 ручек, из них 37 – крас­ные, 8 – зелёные, 17 – фи­о­ле­то­вые, ещё есть синие и чёрные, их по­ров­ну. Най­ди­те ве­ро­ят­ность того, что Алиса на­у­гад вы­та­щит крас­ную или чёрную ручку.

Ответ: 0,56
Аналоги к этому заданию:

Задание 2258

В таб­ли­це пред­став­ле­ны ре­зуль­та­ты четырёх стрел­ков, по­ка­зан­ные ими на тре­ни­ров­ке.

Номер

стрел­ка

Число

вы­стре­лов

Число

по­па­да­ний

1

42

28

2

70

20

3

54

45

4

46

42

Тре­нер решил по­слать на со­рев­но­ва­ния того стрел­ка, у ко­то­ро­го от­но­си­тель­ная ча­сто­та по­па­да­ний выше. Кого из стрел­ков вы­бе­рет тре­нер? Ука­жи­те в от­ве­те его номер.

Ответ: 4
Аналоги к этому заданию:

Задание 2257

Стре­лок 4 раза стре­ля­ет по ми­ше­ням. Ве­ро­ят­ность по­па­да­ния в ми­шень при одном вы­стре­ле равна 0,5. Най­ди­те ве­ро­ят­ность того, что стре­лок пер­вые 3 раза попал в ми­ше­ни, а по­след­ний раз про­мах­нул­ся.

Ответ: 0,0625
Аналоги к этому заданию:

Задание 2256

Иг­раль­ную кость бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что оба раза вы­па­ло число, боль­шее 3.

Ответ: 0,25
Аналоги к этому заданию:

Задание 2254

Опре­де­ли­те ве­ро­ят­ность того, что при бро­са­нии ку­би­ка вы­па­ло число очков, не боль­шее 3.

Ответ: 0,5
Аналоги к этому заданию:

Задание 2253

Опре­де­ли­те ве­ро­ят­ность того, что при бро­са­нии иг­раль­но­го ку­би­ка (пра­виль­ной кости) вы­па­дет не­чет­ное число очков.

Ответ: 0,5
Аналоги к этому заданию:

Задание 2252

В со­рев­но­ва­ни­ях по ху­до­же­ствен­ной гим­на­сти­ке участ­ву­ют три гим­наст­ки из Рос­сии, три гим­наст­ки из Укра­и­ны и че­ты­ре гим­наст­ки из Бе­ло­рус­сии. По­ря­док вы­ступ­ле­ний опре­де­ля­ет­ся же­ребьёвкой. Най­ди­те ве­ро­ят­ность того, что пер­вой будет вы­сту­пать гим­наст­ка из Рос­сии.

Ответ: 0,3
Аналоги к этому заданию:

Задание 2251

Из 1600 па­ке­тов мо­ло­ка в сред­нем 80 про­те­ка­ют. Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но вы­бран­ный пакет мо­ло­ка не течёт?

Ответ: 0,95
Аналоги к этому заданию:

Задание 2250

Петя, Вика, Катя, Игорь, Антон, По­ли­на бро­си­ли жре­бий — кому на­чи­нать игру. Най­ди­те ве­ро­ят­ность того, что на­чи­нать игру дол­жен будет маль­чик.

Ответ: 0,5
Аналоги к этому заданию:

Задание 2249

Из каж­дых 1000 элек­три­че­ских лам­по­чек 5 бра­ко­ван­ных. Ка­ко­ва ве­ро­ят­ность ку­пить ис­прав­ную лам­поч­ку?

Ответ: 0,995
Аналоги к этому заданию:

Задание 2248

В лыж­ных гон­ках участ­ву­ют 11 спортс­ме­нов из Рос­сии, 6 спортс­ме­нов из Нор­ве­гии и 3 спортс­ме­на из Шве­ции. По­ря­док, в ко­то­ром спортс­ме­ны стар­ту­ют, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что пер­вым будет стар­то­вать спортс­мен из Рос­сии.

Ответ: 0,55
Аналоги к этому заданию:

Задание 2247

Перед на­ча­лом фут­боль­но­го матча судья бро­са­ет мо­нет­ку, чтобы опре­де­лить, какая из ко­манд будет пер­вой вла­деть мячом. Ко­ман­да А долж­на сыг­рать два матча — с ко­ман­дой В и с ко­ман­дой С. Най­ди­те ве­ро­ят­ность того, что в обоих мат­чах пер­вой мячом будет вла­деть ко­ман­да А.

Ответ: 0,25
Аналоги к этому заданию:

Задание 2246

Стас, Денис, Костя, Маша, Дима бро­си­ли жре­бий — кому на­чи­нать игру. Най­ди­те ве­ро­ят­ность того, что на­чи­нать игру долж­на будет де­воч­ка.

Ответ: 0,2
Аналоги к этому заданию:

Задание 2245

В ко­роб­ке 14 па­ке­ти­ков с чёрным чаем и 6 па­ке­ти­ков с зелёным чаем. Павел на­у­гад вы­ни­ма­ет один па­ке­тик. Ка­ко­ва ве­ро­ят­ность того, что это па­ке­тик с зелёным чаем?

Ответ: 0,3
Аналоги к этому заданию:

Задание 2244

В груп­пе из 20 рос­сий­ских ту­ри­стов не­сколь­ко че­ло­век вла­де­ют ино­стран­ны­ми язы­ка­ми. Из них пя­те­ро го­во­рят толь­ко по-ан­глий­ски, трое толь­ко по-фран­цуз­ски, двое по-фран­цуз­ски и по-ан­глий­ски. Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но вы­бран­ный ту­рист го­во­рит по-фран­цуз­ски?

Ответ: 0,25
Аналоги к этому заданию:

Задание 2243

В чем­пи­о­на­те по фут­бо­лу участ­ву­ют 16 ко­манд, ко­то­рые же­ре­бьев­кой рас­пре­де­ля­ют­ся на 4 груп­пы: A, B, C и D. Ка­ко­ва ве­ро­ят­ность того, что ко­ман­да Рос­сии не по­па­да­ет в груп­пу A?

Ответ: 0,75
Аналоги к этому заданию:

Задание 2242

Из 900 новых флеш-карт в сред­нем 54 не при­год­ны для за­пи­си. Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но вы­бран­ная флеш-карта при­год­на для за­пи­си?

Ответ: 0,94
Аналоги к этому заданию:

Задание 2241

В де­неж­но-ве­ще­вой ло­те­рее на 100 000 би­ле­тов разыг­ры­ва­ет­ся 1300 ве­ще­вых и 850 де­неж­ных вы­иг­ры­шей. Ка­ко­ва ве­ро­ят­ность по­лу­чить ве­ще­вой вы­иг­рыш?

Ответ: 0,013
Аналоги к этому заданию:

Задание 2240

В мешке со­дер­жат­ся же­то­ны с но­ме­ра­ми от 5 до 54 вклю­чи­тель­но. Ка­ко­ва ве­ро­ят­ность, того, что из­вле­чен­ный на­у­гад из мешка жетон со­дер­жит дву­знач­ное число?

Ответ: 0,9
Аналоги к этому заданию:

Задание 2239

Для эк­за­ме­на под­го­то­ви­ли би­ле­ты с но­ме­ра­ми от 1 до 50. Ка­ко­ва ве­ро­ят­ность того, что на­у­гад взя­тый уче­ни­ком билет имеет од­но­знач­ный номер?

Ответ: 0,18
Аналоги к этому заданию:

Задание 2238

В сред­нем из каж­дых 80 по­сту­пив­ших в про­да­жу ак­ку­му­ля­то­ров 76 ак­ку­му­ля­то­ров за­ря­же­ны. Най­ди­те ве­ро­ят­ность того, что куп­лен­ный ак­ку­му­ля­тор не за­ря­жен.

Ответ: 0,05
Аналоги к этому заданию:

Задание 2237

Ро­ди­тель­ский ко­ми­тет за­ку­пил 25 паз­лов для по­дар­ков детям на окон­ча­ние года, из них 15 с ма­ши­на­ми и 10 с ви­да­ми го­ро­дов. По­дар­ки рас­пре­де­ля­ют­ся слу­чай­ным об­ра­зом. Най­ди­те ве­ро­ят­ность того, что Толе до­ста­нет­ся пазл с ма­ши­ной.

Ответ: 0,6
Аналоги к этому заданию:

Задание 2236

У ба­буш­ки 20 чашек: 5 с крас­ны­ми цве­та­ми, осталь­ные с си­ни­ми. Ба­буш­ка на­ли­ва­ет чай в слу­чай­но вы­бран­ную чашку. Най­ди­те ве­ро­ят­ность того, что это будет чашка с си­ни­ми цве­та­ми.

Ответ: 0,75
Аналоги к этому заданию:

Задание 2235

Миша с папой ре­ши­ли по­ка­тать­ся на ко­ле­се обо­зре­ния. Всего на ко­ле­се два­дцать че­ты­ре ка­бин­ки, из них 5 — синие, 7 — зе­ле­ные, осталь­ные — крас­ные. Ка­бин­ки по оче­ре­ди под­хо­дят к плат­фор­ме для по­сад­ки. Най­ди­те ве­ро­ят­ность того, что Миша про­ка­тит­ся в крас­ной ка­бин­ке.

Ответ: 0,5
Аналоги к этому заданию:

Задание 2234

В каж­дой де­ся­той банке кофе со­глас­но усло­ви­ям акции есть приз. Призы рас­пре­де­ле­ны по бан­кам слу­чай­но. Варя по­ку­па­ет банку кофе в на­деж­де вы­иг­рать приз. Най­ди­те ве­ро­ят­ность того, что Варя не най­дет приз в своей банке.

Ответ: 0,9
Аналоги к этому заданию:

Задание 2231

Те­ле­ви­зор у Маши сло­мал­ся и по­ка­зы­ва­ет толь­ко один слу­чай­ный канал. Маша вклю­ча­ет те­ле­ви­зор. В это время по трем ка­на­лам из два­дца­ти по­ка­зы­ва­ют ки­но­ко­ме­дии. Най­ди­те ве­ро­ят­ность того, что Маша по­па­дет на канал, где ко­ме­дия не идет.

Ответ: 0,85
Аналоги к этому заданию:

Задание 2229

На эк­за­ме­не 25 би­ле­тов, Сер­гей не вы­учил 3 из них. Най­ди­те ве­ро­ят­ность того, что ему попадётся вы­учен­ный билет.

Ответ: 0,88
Аналоги к этому заданию:

Задание 2228

Иг­раль­ную кость бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что сумма двух вы­пав­ших чисел равна 4 или 7.

Ответ: 0,25
Аналоги к этому заданию:

Задание 2227

На эк­за­ме­не по гео­мет­рии школь­ни­ку достаётся одна за­да­ча из сбор­ни­ка. Ве­ро­ят­ность того, что эта за­да­ча по теме «Углы», равна 0,1. Ве­ро­ят­ность того, что это ока­жет­ся за­да­ча по теме «Па­рал­ле­ло­грамм», равна 0,6. В сбор­ни­ке нет задач, ко­то­рые од­но­вре­мен­но от­но­сят­ся к этим двум темам. Най­ди­те ве­ро­ят­ность того, что на эк­за­ме­не школь­ни­ку до­ста­нет­ся за­да­ча по одной из этих двух тем.

Ответ: 0,7
Аналоги к этому заданию:

Задание 2226

Ве­ро­ят­ность того, что новая ша­ри­ко­вая ручка пишет плохо (или не пишет), равна 0,19. По­ку­па­тель в ма­га­зи­не вы­би­ра­ет одну такую ручку. Най­ди­те ве­ро­ят­ность того, что эта ручка пишет хо­ро­шо.

Ответ: 0,81
Аналоги к этому заданию:

Задание 2225

Из­вест­но, что в не­ко­то­ром ре­ги­о­не ве­ро­ят­ность того, что ро­див­ший­ся мла­де­нец ока­жет­ся маль­чи­ком, равна 0,512. В 2010 г. в этом ре­ги­о­не на 1000 ро­див­ших­ся мла­ден­цев в сред­нем при­ш­лось 477 де­во­чек. На­сколь­ко ча­сто­та рож­де­ния де­воч­ек в 2010 г. в этом ре­ги­о­не от­ли­ча­ет­ся от ве­ро­ят­но­сти этого со­бы­тия?

Ответ: 0,011
Аналоги к этому заданию:

Задание 2223

Фирма «Вспыш­ка» из­го­тав­ли­ва­ет фо­на­ри­ки. Ве­ро­ят­ность того, что слу­чай­но вы­бран­ный фо­на­рик из пар­тии бра­ко­ван­ный, равна 0,02. Ка­ко­ва ве­ро­ят­ность того, что два слу­чай­но вы­бран­ных из одной пар­тии фо­на­ри­ка ока­жут­ся не­бра­ко­ван­ны­ми?

Ответ: 0,9604
Аналоги к этому заданию:

Задание 744

Стре­лок стре­ля­ет по ми­ше­ни один раз. В слу­чае про­ма­ха стре­лок де­ла­ет вто­рой вы­стрел по той же ми­ше­ни. Ве­ро­ят­ность по­пасть в ми­шень при одном вы­стре­ле равна 0,7. Най­ди­те ве­ро­ят­ность того, что ми­шень будет по­ра­же­на (либо пер­вым, либо вто­рым вы­стре­лом).

Ответ: 0,91
Аналоги к этому заданию:

Задание 743

В кар­ма­не у Пети было 2 мо­не­ты по 5 руб­лей и 4 мо­не­ты по 10 руб­лей. Петя, не глядя, пе­ре­ло­жил какие-то 3 мо­не­ты в дру­гой кар­ман. Най­ди­те ве­ро­ят­ность того, что пя­ти­руб­ле­вые мо­не­ты лежат те­перь в раз­ных кар­ма­нах.

Ответ: 0,6
Аналоги к этому заданию:

Задание 742

Ав­то­ма­ти­че­ская линия из­го­тав­ли­ва­ет ба­та­рей­ки. Ве­ро­ят­ность того, что го­то­вая ба­та­рей­ка не­ис­прав­на, равна 0,02. Перед упа­ков­кой каж­дая ба­та­рей­ка про­хо­дит си­сте­му кон­тро­ля. Ве­ро­ят­ность того, что си­сте­ма за­бра­ку­ет не­ис­прав­ную ба­та­рей­ку, равна 0,99. Ве­ро­ят­ность того, что си­сте­ма по ошиб­ке за­бра­ку­ет ис­прав­ную ба­та­рей­ку, равна 0,01. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ная ба­та­рей­ка будет за­бра­ко­ва­на си­сте­мой кон­тро­ля.

Ответ: 0,0296
Аналоги к этому заданию:

Задание 741

Всем па­ци­ен­там с по­до­зре­ни­ем на ге­па­тит де­ла­ют ана­лиз крови. Если ана­лиз вы­яв­ля­ет ге­па­тит, то ре­зуль­тат ана­ли­за на­зы­ва­ет­ся по­ло­жи­тель­ным. У боль­ных ге­па­ти­том па­ци­ен­тов ана­лиз даёт по­ло­жи­тель­ный ре­зуль­тат с ве­ро­ят­но­стью 0,9. Если па­ци­ент не болен ге­па­ти­том, то ана­лиз может дать лож­ный по­ло­жи­тель­ный ре­зуль­тат с ве­ро­ят­но­стью 0,01. Из­вест­но, что 5% па­ци­ен­тов, по­сту­па­ю­щих с по­до­зре­ни­ем на ге­па­тит, дей­стви­тель­но боль­ны ге­па­ти­том. Най­ди­те ве­ро­ят­ность того, что ре­зуль­тат ана­ли­за у па­ци­ен­та, по­сту­пив­ше­го в кли­ни­ку с по­до­зре­ни­ем на ге­па­тит, будет по­ло­жи­тель­ным.

Ответ: 0,0545
Аналоги к этому заданию:

Задание 740

Перед на­ча­лом во­лей­боль­но­го матча ка­пи­та­ны ко­манд тянут чест­ный жре­бий, чтобы опре­де­лить, какая из ко­манд начнёт игру с мячом. Ко­ман­да «Ста­тор» по оче­ре­ди иг­ра­ет с ко­ман­да­ми «Ротор», «Мотор» и «Стар­тер». Най­ди­те ве­ро­ят­ность того, что «Ста­тор» будет на­чи­нать толь­ко первую и по­след­нюю игры.

Ответ: 0,125
Аналоги к этому заданию:

Задание 739

По от­зы­вам по­ку­па­те­лей Иван Ива­но­вич оце­нил надёжность двух ин­тер­нет-ма­га­зи­нов. Ве­ро­ят­ность того, что нуж­ный товар до­ста­вят из ма­га­зи­на А, равна 0,8. Ве­ро­ят­ность того, что этот товар до­ста­вят из ма­га­зи­на Б, равна 0,9. Иван Ива­но­вич за­ка­зал товар сразу в обоих ма­га­зи­нах. Счи­тая, что ин­тер­нет-ма­га­зи­ны ра­бо­та­ют не­за­ви­си­мо друг от друга, най­ди­те ве­ро­ят­ность того, что ни один ма­га­зин не до­ста­вит товар.

Ответ: 0,02
Аналоги к этому заданию:

Задание 738

На фаб­ри­ке ке­ра­ми­че­ской по­су­ды 10% про­из­ведённых та­ре­лок имеют де­фект. При кон­тро­ле ка­че­ства про­дук­ции вы­яв­ля­ет­ся 80% де­фект­ных та­ре­лок. Осталь­ные та­рел­ки по­сту­па­ют в про­да­жу. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ная при по­куп­ке та­рел­ка не имеет де­фек­тов. Ре­зуль­тат округ­ли­те до сотых.

Ответ: 0,98
Аналоги к этому заданию:

Задание 737

Чтобы по­сту­пить в ин­сти­тут на спе­ци­аль­ность «Линг­ви­сти­ка», аби­ту­ри­ент дол­жен на­брать на ЕГЭ не менее 70 бал­лов по каж­до­му из трёх пред­ме­тов — ма­те­ма­ти­ка, рус­ский язык и ино­стран­ный язык. Чтобы по­сту­пить на спе­ци­аль­ность «Ком­мер­ция», нужно на­брать не менее 70 бал­лов по каж­до­му из трёх пред­ме­тов — ма­те­ма­ти­ка, рус­ский язык и об­ще­ст­во­зна­ние. Ве­ро­ят­ность того, что аби­ту­ри­ент З. по­лу­чит не менее 70 бал­лов по ма­те­ма­ти­ке, равна 0,6, по рус­ско­му языку — 0,8, по ино­стран­но­му языку — 0,7 и по об­ще­ст­во­зна­нию — 0,5. Най­ди­те ве­ро­ят­ность того, что З. смо­жет по­сту­пить хотя бы на одну из двух упо­мя­ну­тых спе­ци­аль­но­стей.

Ответ: 0,408
Аналоги к этому заданию:

Задание 736

Аг­ро­фир­ма за­ку­па­ет ку­ри­ные яйца в двух до­маш­них хо­зяй­ствах. 40% яиц из пер­во­го хо­зяй­ства — яйца выс­шей ка­те­го­рии, а из вто­ро­го хо­зяй­ства — 20% яиц выс­шей ка­те­го­рии. Всего выс­шую ка­те­го­рию по­лу­ча­ет 35% яиц. Най­ди­те ве­ро­ят­ность того, что яйцо, куп­лен­ное у этой аг­ро­фир­мы, ока­жет­ся из пер­во­го хо­зяй­ства.

Ответ: 0,75
Аналоги к этому заданию:

Задание 735

Ков­бой Джон по­па­да­ет в муху на стене с ве­ро­ят­но­стью 0,9, если стре­ля­ет из при­стре­лян­но­го ре­воль­ве­ра. Если Джон стре­ля­ет из не­при­стре­лян­но­го ре­воль­ве­ра, то он по­па­да­ет в муху с ве­ро­ят­но­стью 0,2. На столе лежит 10 ре­воль­ве­ров, из них толь­ко 4 при­стре­лян­ные. Ков­бой Джон видит на стене муху, на­уда­чу хва­та­ет пер­вый по­пав­ший­ся ре­воль­вер и стре­ля­ет в муху. Най­ди­те ве­ро­ят­ность того, что Джон про­махнётся.

Ответ: 0,52
Аналоги к этому заданию:

Задание 734

Две фаб­ри­ки вы­пус­ка­ют оди­на­ко­вые стек­ла для ав­то­мо­биль­ных фар. Пер­вая фаб­ри­ка вы­пус­ка­ет 45% этих сте­кол, вто­рая — 55%. Пер­вая фаб­ри­ка вы­пус­ка­ет 3% бра­ко­ван­ных сте­кол, а вто­рая — 1%. Най­ди­те ве­ро­ят­ность того, что слу­чай­но куп­лен­ное в ма­га­зи­не стек­ло ока­жет­ся бра­ко­ван­ным.

Ответ: 0,019
Аналоги к этому заданию:

Задание 733

В ма­га­зи­не стоят два платёжных ав­то­ма­та. Каж­дый из них может быть не­ис­пра­вен с ве­ро­ят­но­стью 0,05 не­за­ви­си­мо от дру­го­го ав­то­ма­та. Най­ди­те ве­ро­ят­ность того, что хотя бы один ав­то­мат ис­пра­вен.

Ответ: 0,9975
Аналоги к этому заданию:

Задание 732

В Вол­шеб­ной стра­не бы­ва­ет два типа по­го­ды: хо­ро­шая и от­лич­ная, причём по­го­да, уста­но­вив­шись утром, дер­жит­ся не­из­мен­ной весь день. Из­вест­но, что с ве­ро­ят­но­стью 0,8 по­го­да зав­тра будет такой же, как и се­год­ня. Се­год­ня 3 июля, по­го­да в Вол­шеб­ной стра­не хо­ро­шая. Най­ди­те ве­ро­ят­ность того, что 6 июля в Вол­шеб­ной стра­не будет от­лич­ная по­го­да.

Ответ: 0,392
Аналоги к этому заданию:

Задание 731

Чтобы прой­ти в сле­ду­ю­щий круг со­рев­но­ва­ний, фут­боль­ной ко­ман­де нужно на­брать хотя бы 4 очка в двух играх. Если ко­ман­да вы­иг­ры­ва­ет, она по­лу­ча­ет 3 очка, в слу­чае ни­чьей — 1 очко, если про­иг­ры­ва­ет — 0 очков. Най­ди­те ве­ро­ят­ность того, что ко­ман­де удаст­ся выйти в сле­ду­ю­щий круг со­рев­но­ва­ний. Счи­тай­те, что в каж­дой игре ве­ро­ят­но­сти вы­иг­ры­ша и про­иг­ры­ша оди­на­ко­вы и равны 0,4.

Ответ: 0,32
Аналоги к этому заданию:

Задание 730

На эк­за­ме­не по гео­мет­рии школь­ник от­ве­ча­ет на один во­прос из спис­ка эк­за­ме­на­ци­он­ных во­про­сов. Ве­ро­ят­ность того, что это во­прос по теме «Впи­сан­ная окруж­ность», равна 0,2. Ве­ро­ят­ность того, что это во­прос по теме «Па­рал­ле­ло­грамм», равна 0,15. Во­про­сов, ко­то­рые од­но­вре­мен­но от­но­сят­ся к этим двум темам, нет. Най­ди­те ве­ро­ят­ность того, что на эк­за­ме­не школь­ни­ку до­ста­нет­ся во­прос по одной из этих двух тем.

Ответ: 0,35
Аналоги к этому заданию:

Задание 729

При ар­тил­ле­рий­ской стрель­бе ав­то­ма­ти­че­ская си­сте­ма де­ла­ет вы­стрел по цели. Если цель не уни­что­же­на, то си­сте­ма де­ла­ет по­втор­ный вы­стрел. Вы­стре­лы по­вто­ря­ют­ся до тех пор, пока цель не будет уни­что­же­на. Ве­ро­ят­ность уни­что­же­ния не­ко­то­рой цели при пер­вом вы­стре­ле равна 0,4, а при каж­дом по­сле­ду­ю­щем — 0,6. Сколь­ко вы­стре­лов по­тре­бу­ет­ся для того, чтобы ве­ро­ят­ность уни­что­же­ния цели была не менее 0,98? В от­ве­те ука­жи­те наи­мень­шее не­об­хо­ди­мое ко­ли­че­ство вы­стре­лов.

Ответ: 5
Аналоги к этому заданию:

Задание 728

По­ме­ще­ние осве­ща­ет­ся фонарём с двумя лам­па­ми. Ве­ро­ят­ность пе­ре­го­ра­ния лампы в те­че­ние года равна 0,3. Най­ди­те ве­ро­ят­ность того, что в те­че­ние года хотя бы одна лампа не пе­ре­го­рит.

Ответ: 0,91
Аналоги к этому заданию:

Задание 727

Би­ат­ло­нист пять раз стре­ля­ет по ми­ше­ням. Ве­ро­ят­ность по­па­да­ния в ми­шень при одном вы­стре­ле равна 0,8. Най­ди­те ве­ро­ят­ность того, что би­ат­ло­нист пер­вые три раза попал в ми­ше­ни, а по­след­ние два про­мах­нул­ся. Ре­зуль­тат округ­ли­те до сотых.

Ответ: 0,02
Аналоги к этому заданию:

Задание 726

При из­го­тов­ле­нии под­шип­ни­ков диа­мет­ром 67 мм ве­ро­ят­ность того, что диа­метр будет от­ли­чать­ся от за­дан­но­го не боль­ше, чем на 0,01 мм, равна 0,965. Най­ди­те ве­ро­ят­ность того, что слу­чай­ный под­шип­ник будет иметь диа­метр мень­ше чем 66,99 мм или боль­ше чем 67,01 мм.

Ответ: 0,035
Аналоги к этому заданию:

Задание 725

Ве­ро­ят­ность того, что в слу­чай­ный мо­мент вре­ме­ни тем­пе­ра­ту­ра тела здо­ро­во­го че­ло­ве­ка ока­жет­ся ниже чем 36,8 °С, равна 0,81. Най­ди­те ве­ро­ят­ность того, что в слу­чай­ный мо­мент вре­ме­ни у здо­ро­во­го че­ло­ве­ка тем­пе­ра­ту­ра ока­жет­ся 36,8 °С или выше.

Ответ: 0,19
Аналоги к этому заданию:

Задание 724

На ри­сун­ке изоб­ражён ла­би­ринт. Паук за­пол­за­ет в ла­би­ринт в точке «Вход». Раз­вер­нуть­ся и полз­ти назад паук не может, по­это­му на каж­дом раз­ветв­ле­нии паук вы­би­ра­ет один из путей, по ко­то­ро­му ещё не полз. Счи­тая, что выбор даль­ней­ше­го пути чисто слу­чай­ный, опре­де­ли­те, с какой ве­ро­ят­но­стью паук придёт к вы­хо­ду  D

ege_p_4_1_1.jpg

Ответ: 0,0625
Аналоги к этому заданию:

Задание 723

В ма­га­зи­не три про­дав­ца. Каж­дый из них занят с кли­ен­том с ве­ро­ят­но­стью 0,3. Най­ди­те ве­ро­ят­ность того, что в слу­чай­ный мо­мент вре­ме­ни все три про­дав­ца за­ня­ты од­но­вре­мен­но (счи­тай­те, что кли­ен­ты за­хо­дят не­за­ви­си­мо друг от друга).

Ответ: 0,027
Аналоги к этому заданию:

Задание 722

Ве­ро­ят­ность того, что на те­сти­ро­ва­нии по ма­те­ма­ти­ке уча­щий­ся П. верно решит боль­ше 12 задач, равна 0,7. Ве­ро­ят­ность того, что П. верно решит боль­ше 11 задач, равна 0,79. Най­ди­те ве­ро­ят­ность того, что П. верно решит ровно 12 задач.

Ответ: 0,09
Аналоги к этому заданию:

Задание 721

В тор­го­вом цен­тре два оди­на­ко­вых ав­то­ма­та про­да­ют кофе. Об­слу­жи­ва­ние ав­то­ма­тов про­ис­хо­дит по ве­че­рам после за­кры­тия цен­тра. Из­вест­но, что ве­ро­ят­ность со­бы­тия «К ве­че­ру в пер­вом ав­то­ма­те за­кон­чит­ся кофе» равна 0,25. Такая же ве­ро­ят­ность со­бы­тия «К ве­че­ру во вто­ром ав­то­ма­те за­кон­чит­ся кофе». Ве­ро­ят­ность того, что кофе к ве­че­ру за­кон­чит­ся в обоих ав­то­ма­тах, равна 0,15. Най­ди­те ве­ро­ят­ность того, что к ве­че­ру дня кофе оста­нет­ся в обоих ав­то­ма­тах.

Ответ: 0,65
Аналоги к этому заданию:

Задание 720

Если шах­ма­тист А. иг­ра­ет бе­лы­ми фи­гу­ра­ми, то он вы­иг­ры­ва­ет у шах­ма­ти­ста Б. с ве­ро­ят­но­стью 0,5. Если А. иг­ра­ет чер­ны­ми, то А. вы­иг­ры­ва­ет у Б. с ве­ро­ят­но­стью 0,3. Шах­ма­ти­сты А. и Б. иг­ра­ют две пар­тии, причём во вто­рой пар­тии ме­ня­ют цвет фигур. Най­ди­те ве­ро­ят­ность того, что А. вы­иг­ра­ет оба раза.

Ответ: 0,15
Аналоги к этому заданию:

Задание 719

Из рай­он­но­го цен­тра в де­рев­ню еже­днев­но ходит ав­то­бус. Ве­ро­ят­ность того, что в по­не­дель­ник в ав­то­бу­се ока­жет­ся мень­ше 18 пас­са­жи­ров, равна 0,82. Ве­ро­ят­ность того, что ока­жет­ся мень­ше 10 пас­са­жи­ров, равна 0,51. Най­ди­те ве­ро­ят­ность того, что число пас­са­жи­ров будет от 10 до 17.

Ответ: 0,31
Аналоги к этому заданию:

Задание 718

Ве­ро­ят­ность того, что новый элек­три­че­ский чай­ник про­слу­жит боль­ше года, равна 0,93. Ве­ро­ят­ность того, что он про­слу­жит боль­ше двух лет, равна 0,87. Най­ди­те ве­ро­ят­ность того, что он про­слу­жит мень­ше двух лет, но боль­ше года.

Ответ: 0,06
Аналоги к этому заданию:

Задание 717

Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но вы­бран­ный те­ле­фон­ный номер окан­чи­ва­ет­ся двумя чётными циф­ра­ми?

Ответ: 0,25
Аналоги к этому заданию:

Задание 716

Ве­ро­ят­ность того, что ба­та­рей­ка бра­ко­ван­ная, равна 0,06. По­ку­па­тель в ма­га­зи­не вы­би­ра­ет слу­чай­ную упа­ков­ку, в ко­то­рой две таких ба­та­рей­ки. Най­ди­те ве­ро­ят­ность того, что обе ба­та­рей­ки ока­жут­ся ис­прав­ны­ми.

Ответ: 0,8836
Аналоги к этому заданию:

Задание 715

В сред­нем из 2000 са­до­вых на­со­сов, по­сту­пив­ших в про­да­жу, 6 под­те­ка­ют. Най­ди­те ве­ро­ят­ность того, что один слу­чай­но вы­бран­ный для кон­тро­ля насос не под­те­ка­ет?

Ответ: 0,997
Скрыть

Вероятность того, что насос подтекает: $$\frac{6}{2000}=0,003$$. Тогда вероятность противоположного события, что не подтекает: $$1-0,003=0,997$$

Аналоги к этому заданию:

Задание 714

В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют три­жды. Най­ди­те ве­ро­ят­ность того, что вы­па­дет хотя бы две решки.

Ответ: 0,5
Скрыть

Всего возможных исходов: $$2^{3}=8$$ (количество сторон предмета в степени количества бросков). Найдем варианты выпадения хотя бы двух решек - две решки или три решки: РРО ; РОР ; ОРР ; РРР. Всего исходов - 4. Тогда вероятность составит: $$\frac{4}{8}=0,5$$

Аналоги к этому заданию:

Задание 713

На чем­пи­о­на­те по прыж­кам в воду вы­сту­па­ют 20 спортс­ме­нов, среди них 3 пры­гу­на из Чехии и 2 пры­гу­на из Бо­ли­вии. По­ря­док вы­ступ­ле­ний опре­де­ля­ет­ся же­ре­бьев­кой. Най­ди­те ве­ро­ят­ность того, что две­на­дца­тым будет вы­сту­пать пры­гун из Чехии.

Ответ: 0,15
Скрыть

Необходимо количество спортсменов из Чехии поделить на общее количество спортсменов: $$\frac{3}{20}=0,15$$

Аналоги к этому заданию:

Задание 712

У Вити в ко­пил­ке лежит 12 рублёвых, 6 двух­рублёвых, 4 пя­ти­рублёвых и 3 де­ся­ти­рублёвых мо­не­ты. Витя на­у­гад достаёт из ко­пил­ки одну мо­не­ту. Най­ди­те ве­ро­ят­ность того, что остав­ша­я­ся в ко­пил­ке сумма со­ста­вит более 70 руб­лей.

Ответ: 0,72
Скрыть

Всего в копилке: $$12+6*2+4*5+3*10=74$$ рубля. Чтобы оставшаяся сумма составила более 70 рублей, Витя должен достать или рублевую или 2х рублевую монету. Всего монет - 25, рублевых и 2х рублевых - 18. Тогда вероятность составит: $$\frac{18}{25}=0,72$$

Аналоги к этому заданию:

Задание 710

За круг­лый стол на 9 сту­льев в слу­чай­ном по­ряд­ке рас­са­жи­ва­ют­ся 7 маль­чи­ков и 2 де­воч­ки. Най­ди­те ве­ро­ят­ность того, что обе де­воч­ки будут си­деть рядом.

Ответ: 0,25
Скрыть

Пусть одна из девочек уже сидит на каком-то стуле, рядом с ней находятся еще два стула. Чтобы вторая девочка села рядом, она должна попасть на один из этих стульев. Но ребят, претендующих на них остается 8 (7 мальчиков и 1 девочка), тогда вероятность составит: $$\frac{2}{8}=0,25$$

Аналоги к этому заданию:

Задание 709

Ме­ха­ни­че­ские часы с две­на­дца­ти­ча­со­вым ци­фер­бла­том в какой-то мо­мент сло­ма­лись и пе­ре­ста­ли идти. Най­ди­те ве­ро­ят­ность того, что ча­со­вая стрел­ка оста­но­ви­лась, до­стиг­нув от­мет­ки 10, но не дойдя до от­мет­ки 1.

Ответ: 0,25
Скрыть

Всего на циферблате 12 делений часовых. Между 10 и 1 находится 3 деления-часа (10 ; 11 ; 12, 1 - не входит, так как не достигается), т.е. проходит 3 часа времени (из 12), тогда вероятность составит $$\frac{3}{12}=0,25$$.

Аналоги к этому заданию:

Задание 708

В кар­ма­не у Миши было че­ты­ре кон­фе­ты — «Гри­льяж», «Бе­лоч­ка», «Ко­ров­ка» и «Ла­сточ­ка», а также ключи от квар­ти­ры. Вы­ни­мая ключи, Миша слу­чай­но вы­ро­нил из кар­ма­на одну кон­фе­ту. Най­ди­те ве­ро­ят­ность того, что по­те­ря­лась кон­фе­та «Гри­льяж».

Ответ: 0,25
Скрыть

Для этого необходимо количество конфет "Грильяж" поделить на общее количества конфет: $$\frac{1}{4}=0,25$$

Аналоги к этому заданию:

Задание 707

Ве­ро­ят­ность того, что новый DVD-про­иг­ры­ва­тель в те­че­ние года по­сту­пит в га­ран­тий­ный ре­монт, равна 0,045. В не­ко­то­ром го­ро­де из 1000 про­дан­ных DVD-про­иг­ры­ва­те­лей в те­че­ние года в га­ран­тий­ную ма­стер­скую по­сту­пи­ла 51 штука. На сколь­ко от­ли­ча­ет­ся ча­сто­та со­бы­тия «га­ран­тий­ный ре­монт» от его ве­ро­ят­но­сти в этом го­ро­де?

Ответ: 0,006
Скрыть

Частота события составляет: $$\frac{51}{1000}=0,051$$. Разница между частой и вероятностью в таком случае: $$0,051-0,045=0,006$$

Аналоги к этому заданию:

Задание 706

В груп­пе ту­ри­стов 30 че­ло­век. Их вер­толётом в не­сколь­ко приёмов за­бра­сы­ва­ют в труд­но­до­ступ­ный район по 6 че­ло­век за рейс. По­ря­док, в ко­то­ром вер­толёт пе­ре­во­зит ту­ри­стов, слу­ча­ен. Най­ди­те ве­ро­ят­ность того, что ту­рист П. по­ле­тит пер­вым рей­сом вер­толёта.

Ответ: 0,2
Скрыть

Вероятность того, что турист П. полетит каким-либо рейсом вычисляется как отношения мест в этом рейсе к общему количеству туристу, то есть, вероятность того, что полетит первым рейсом: $$\frac{6}{30}=0,2$$

Аналоги к этому заданию:

Задание 705

В фирме такси в на­ли­чии 50 лег­ко­вых ав­то­мо­би­лей; 27 из них чёрного цвета с жёлтыми над­пи­ся­ми на бор­тах, осталь­ные — жёлтого цвета с чёрными над­пи­ся­ми. Най­ди­те ве­ро­ят­ность того, что на слу­чай­ный вызов при­е­дет ма­ши­на жёлтого цвета с чёрными над­пи­ся­ми.

Ответ: 0,46
Скрыть

Вероятность того, что приедет черная, составляет :$$\frac{27}{50}=0,54$$, тогда вероятность того, что приедет желтая равна: $$1-0,54=0,46$$ (как противоположное событие приезду черной)

Аналоги к этому заданию:

Задание 704

В клас­се 26 уча­щих­ся, среди них два друга — Ан­дрей и Сер­гей. Уча­щих­ся слу­чай­ным об­ра­зом раз­би­ва­ют на 2 рав­ные груп­пы. Най­ди­те ве­ро­ят­ность того, что Ан­дрей и Сер­гей ока­жут­ся в одной груп­пе.

Ответ: 0,48
Скрыть

В каждой из групп оказывается по 26/2=13 учащихся. Пусть Андрей уже находится в какой-то из групп. Тогда мест свободных в ней остается 13-1=12, а учащихся, которые могут туда попасть 26-1=25. Следовательно, вероятность того, что Сергей так же попадет в эту группу: $$\frac{12}{25}=0,48$$.

Аналоги к этому заданию:

Задание 703

На олим­пиа­де по рус­ско­му языку 250 участ­ни­ков раз­ме­сти­ли в трёх ауди­то­ри­ях. В пер­вых двух уда­лось раз­ме­стить по 120 че­ло­век, остав­ших­ся пе­ре­ве­ли в за­пас­ную ауди­то­рию в дру­гом кор­пу­се. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ный участ­ник писал олим­пи­а­ду в за­пас­ной ауди­то­рии.

Ответ: 0,04
Скрыть

В первых двух разместили : 120*2=240 участников, следовательно, в запасной 250-240=10 участников, тогда вероятность попасть в запасную аудиторию составила: $$\frac{10}{250}=0,04$$

Аналоги к этому заданию:

Задание 702

На борту самолёта 12 кре­сел рас­по­ло­же­ны рядом с за­пас­ны­ми вы­хо­да­ми и 18 — за пе­ре­го­род­ка­ми, раз­де­ля­ю­щи­ми са­ло­ны. Все эти места удоб­ны для пас­са­жи­ра вы­со­ко­го роста. Осталь­ные места не­удоб­ны. Пас­са­жир В. вы­со­ко­го роста. Най­ди­те ве­ро­ят­ность того, что на ре­ги­стра­ции при слу­чай­ном вы­бо­ре места пас­са­жи­ру В. до­ста­нет­ся удоб­ное место, если всего в самолёте 300 мест.

Ответ: 0,1
Скрыть

Удобных мест для пассажира: 12+18=30. Всего мест 300, тогда вероятность того, что место достанется удобное: $$\frac{30}{300}=0,1$$

Аналоги к этому заданию:

Задание 701

В не­ко­то­ром го­ро­де из 5000 по­явив­ших­ся на свет мла­ден­цев 2512 маль­чи­ков. Най­ди­те ча­сто­ту рож­де­ния де­во­чек в этом го­ро­де. Ре­зуль­тат округ­ли­те до ты­сяч­ных.

Ответ: 0,498
Скрыть

Частота рождения мальчиков вычисляется ,как отношения общего количества родившихся мальчиков, к общему количеству родившихся детей: $$\frac{2512}{5000}=0,5024$$, тогда частота рождения девочек составляет: $$1-0,5024=0,4976\approx 0,498$$

Аналоги к этому заданию:

Задание 700

На рок-фе­сти­ва­ле вы­сту­па­ют груп­пы — по одной от каж­дой из за­яв­лен­ных стран. По­ря­док вы­ступ­ле­ния опре­де­ля­ет­ся жре­би­ем. Ка­ко­ва ве­ро­ят­ность того, что груп­па из Дании будет вы­сту­пать после груп­пы из Шве­ции и после груп­пы из Нор­ве­гии? Ре­зуль­тат округ­ли­те до сотых.

Ответ: 0,33
Скрыть

Количество команд в таком случае не имеет значение, имеет значение возможные расположения трех команд (Дании (Д), Швеции (Ш), Норвегии (Н)) друг относительно друга - их : ДШН; ДНШ; НДШ; НШД; ШНД; ШДН (вычисляет по формуле числа перестановок: $$N=n!$$, где n - число объектов, потому $$N=3!=1*2*3=6$$), вариантов расположения Дании после Швеции и Норвегии - 2 (ШНД и НШД), тогда вероятность данного события :$$\frac{2}{6}=0,(3)$$. Если округлить до сотых: $$0,3333...\approx 0,33$$

Аналоги к этому заданию:

Задание 699

В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что на­сту­пит исход ОР (в пер­вый раз вы­па­да­ет орёл, во вто­рой — решка).

Ответ: 0,25
Скрыть

Всего исходов - 4 (количество сторон монеты в степени количества бросков $$2^{2}=4$$), исход ОР - 1, тогда вероятность: $$\frac{1}{4}=0,25$$

Аналоги к этому заданию:

Задание 697

Перед на­ча­лом фут­боль­но­го матча судья бро­са­ет мо­нет­ку, чтобы опре­де­лить, какая из ко­манд начнёт игру с мячом. Ко­ман­да «Физик» иг­ра­ет три матча с раз­ны­ми ко­ман­да­ми. Най­ди­те ве­ро­ят­ность того, что в этих играх «Физик» вы­иг­ра­ет жре­бий ровно два раза.

Ответ: 0,375
Скрыть

Распишем все возможные варианты для команды "Физик" (В - выиграла жребий, П - проиграла жребий) - всего их будет 8, так как вариантов исхода жребия -2 (выиграл и проиграл), а игр - 3: $$2^{3}=8$$: ВВВ; ВВП; ВПВ; ПВВ; ВПП; ПВП; ППВ; ППП. Количество вариантов, где встречается два раза В всего 3: ВВП; ВПВ; ПВВ, тогда вероятность составит: $$\frac{3}{8}=0,375$$

Аналоги к этому заданию:

Задание 696

В груп­пе ту­ри­стов 5 че­ло­век. С по­мо­щью жре­бия они вы­би­ра­ют двух че­ло­век, ко­то­рые долж­ны идти в село в ма­га­зин за про­дук­та­ми. Ка­ко­ва ве­ро­ят­ность того, что ту­рист Д., вхо­дя­щий в со­став груп­пы, пойдёт в ма­га­зин?

Ответ: 0,4
Скрыть

В группе, которая пойдет в магазин 2 человека, всего же туристов - 5, тогда вероятность того, что турист Д. пойдет в магазин (как и любой другой из туристов): $$\frac{2}{5}=0,4$$

Аналоги к этому заданию:

Задание 695

Из мно­же­ства на­ту­раль­ных чисел от 10 до 19 на­уда­чу вы­би­ра­ют одно число. Ка­ко­ва ве­ро­ят­ность того, что оно де­лит­ся на 3?

Ответ: 0,3
Скрыть

Количество чисел с данного промежутка, которые делятся на три - 3 (12 ; 15 ; 18), общее количество цифр - 10 (19-9=10, берем 9 вместо 10 как вычитаемое, потому что 10 входит в промежуток), тогда вероятность того, что число делится на три: $$\frac{3}{10}=0,3$$

Аналоги к этому заданию:

Задание 694

На кла­ви­а­ту­ре те­ле­фо­на 10 цифр, от 0 до 9. Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но на­жа­тая цифра будет чётной?

Ответ: 0,5
Скрыть

Количество четных цифр - 5 (0 ; 2 ; 4 ; 6 ; 8), общее количество цифр - 10, тогда вероятность того, что цифра будет четной : $$\frac{5}{10}=0,5$$

Аналоги к этому заданию:

Задание 693

В чем­пи­о­на­те мира участ­ву­ют 16 ко­манд. С по­мо­щью жре­бия их нужно раз­де­лить на че­ты­ре груп­пы по че­ты­ре ко­ман­ды в каж­дой. В ящике впе­ре­меш­ку лежат кар­точ­ки с но­ме­ра­ми групп:

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.

Ка­пи­та­ны ко­манд тянут по одной кар­точ­ке. Ка­ко­ва ве­ро­ят­ность того, что ко­ман­да Рос­сии ока­жет­ся во вто­рой груп­пе?

Ответ: 0,25
Скрыть

Количество команд во второй группе - 4, общее количество команд - 16, тогда вероятность того, что команда из России окажется во второй группе (как и в любой другой) составляет: $$\frac{4}{16}=0,25$$

Аналоги к этому заданию:

Задание 692

Вася, Петя, Коля и Лёша бро­си­ли жре­бий — кому на­чи­нать игру. Най­ди­те ве­ро­ят­ность того, что на­чи­нать игру дол­жен будет Петя.

Ответ: 0,25
Скрыть

Для этого необходимо найти отношение количества Петь к общему количеству ребят: $$\frac{1}{4}=0,25$$

Аналоги к этому заданию:

Задание 691

В сбор­ни­ке би­ле­тов по ма­те­ма­ти­ке всего 25 би­ле­тов, в 10 из них встре­ча­ет­ся во­прос по теме "Не­ра­вен­ства". Най­ди­те ве­ро­ят­ность того, что в слу­чай­но вы­бран­ном на эк­за­ме­не би­ле­те школь­ни­ку не до­ста­нет­ся во­про­са по теме "Не­ра­вен­ства".

Ответ: 0,6
Скрыть

Найдем вероятность того, что вопрос будет по теме "Неравенства": $$\frac{10}{25}=0,4$$. Тогда вероятность противоположного события, что вопрос будет не по теме "Неравенства" составляет : $$1-0,4=0,6$$

Аналоги к этому заданию:

Задание 690

В сбор­ни­ке би­ле­тов по био­ло­гии всего 55 би­ле­тов, в 11 из них встре­ча­ет­ся во­прос по теме "Бо­та­ни­ка". Най­ди­те ве­ро­ят­ность того, что в слу­чай­но вы­бран­ном на эк­за­ме­не би­ле­те школь­ни­ку до­ста­нет­ся во­прос по теме "Бо­та­ни­ка".

Ответ: 0,2
Скрыть

Для этого необходимо найти отношения количества вопросов по теме "Ботаника" к общему количеству вопросов: $$\frac{11}{55}=0,2$$

Аналоги к этому заданию:

Задание 689

Перед на­ча­лом пер­во­го тура чем­пи­о­на­та по бад­мин­то­ну участ­ни­ков раз­би­ва­ют на иг­ро­вые пары слу­чай­ным об­ра­зом с по­мо­щью жре­бия. Всего в чем­пи­о­на­те участ­ву­ет 26 бад­мин­то­ни­стов, среди ко­то­рых 10 спортс­ме­нов из Рос­сии, в том числе Рус­лан Орлов. Най­ди­те ве­ро­ят­ность того, что в пер­вом туре Рус­лан Орлов будет иг­рать с каким-либо бад­мин­то­ни­стом из Рос­сии.

Ответ: 0,36
Скрыть

Кроме Руслана Орлова из России 10-1=9 бад­мин­тонистом, а всего 26-1=25 бад­мин­тонистом. Тогда, вероятность играть с кем-либо из России у него составит: $$\frac{9}{25}=0,36$$

Аналоги к этому заданию:

Задание 688

На кон­фе­рен­цию при­е­ха­ли 3 уче­ных из Нор­ве­гии, 3 из Рос­сии и 4 из Ис­па­нии. Каж­дый из них де­ла­ет на кон­фе­рен­ции один до­клад. По­ря­док до­кла­дов опре­де­ля­ет­ся же­ребьёвкой. Най­ди­те ве­ро­ят­ность того, что вось­мым ока­жет­ся до­клад уче­но­го из Рос­сии.

Ответ: 0,3
Скрыть

Общее количество исполнителей: 3+3+4=10. Исполнителей из России 3, следовательно, вероятность выступления восьмым ( как и любым другим по счету ) исполнителя из России составит: $$\frac{3}{10}=0,3$$

Аналоги к этому заданию:

Задание 687

Кон­курс ис­пол­ни­те­лей про­во­дит­ся в 5 дней. Всего за­яв­ле­но 80 вы­ступ­ле­ний — по од­но­му от каж­дой стра­ны, участ­ву­ю­щей в кон­кур­се. Ис­пол­ни­тель из Рос­сии участ­ву­ет в кон­кур­се. В пер­вый день за­пла­ни­ро­ва­но 8 вы­ступ­ле­ний, осталь­ные рас­пре­де­ле­ны по­ров­ну между остав­ши­ми­ся днями. По­ря­док вы­ступ­ле­ний опре­де­ля­ет­ся же­ребьёвкой. Ка­ко­ва ве­ро­ят­ность, что вы­ступ­ле­ние ис­пол­ни­те­ля из Рос­сии со­сто­ит­ся в тре­тий день кон­кур­са?

Ответ: 0,225
Скрыть

На оставшиеся 4 дня приходится: 80-8=72 выступления. Следовательно, каждый из оставшихся дней будет проходить : $$\frac{72}{4}=18$$ выступлений ( в том числе и в третий ). Тогда, вероятность выступления исполнителя из России в третий день ( как и в любой и 4 оставшихся ) составляет: $$\frac{18}{80}=0,225$$

Аналоги к этому заданию:

Задание 686

На­уч­ная кон­фе­рен­ция про­во­дит­ся в 5 дней. Всего за­пла­ни­ро­ва­но 75 до­кла­дов — пер­вые три дня по 17 до­кла­дов, осталь­ные рас­пре­де­ле­ны по­ров­ну между чет­вер­тым и пятым днями. По­ря­док до­кла­дов опре­де­ля­ет­ся же­ребьёвкой. Ка­ко­ва ве­ро­ят­ность, что до­клад про­фес­со­ра М. ока­жет­ся за­пла­ни­ро­ван­ным на по­след­ний день кон­фе­рен­ции?

Ответ: 0,16
Скрыть

На четвертый день запланировано: $$n=\frac{75-17*3}{2}=12$$. Вероятность того, что выступление будет в последний день вычисляется как отношение количества докладов, запланированных в последний день, к общему количеству докладов: $$P=\frac{12}{75}=0,16$$

Аналоги к этому заданию:

Задание 685

В со­рев­но­ва­ни­ях по тол­ка­нию ядра участ­ву­ют 4 спортс­ме­на из Фин­лян­дии, 7 спортс­ме­нов из Дании, 9 спортс­ме­нов из Шве­ции и 5 — из Нор­ве­гии. По­ря­док, в ко­то­ром вы­сту­па­ют спортс­ме­ны, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что спортс­мен, ко­то­рый вы­сту­па­ет по­след­ним, ока­жет­ся из Шве­ции.

Ответ: 0,36
Скрыть
Всего спортсменов: $$N=4+7+9+5=25$$. 
В таком случае вероятность того, что последний будет из Швеции вычисляется как отношение количества спортсменов из Швеции к общему количеству: $$P=\frac{9}{25}=0,36$$
Аналоги к этому заданию:

Задание 684

Фаб­ри­ка вы­пус­ка­ет сумки. В сред­нем 8 сумок из 100 имеют скры­тые де­фек­ты. Най­ди­те ве­ро­ят­ность того, что куп­лен­ная сумка ока­жет­ся без де­фек­тов.

Ответ: 0,92
Скрыть

Количество сумок без дефектов: $$n=100-8=92$$
Вероятность, что будет без дефекта вычисляется как отношение количества без дефектов, к общему количеству:$$P=\frac{92}{100}=0,92$$

Аналоги к этому заданию:

Задание 683

При про­из­вод­стве в сред­нем на каж­дые 2982 ис­прав­ных на­со­са при­хо­дит­ся 18 не­ис­прав­ных. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ный насос ока­жет­ся не­ис­прав­ным.

Ответ: 0,006
Скрыть

Общее количество насосов в таком случае составляет : $$N=2982+18=3000$$
В таком случае вероятность равна отношению количества подтекающих, к общему количеству насосов:$$P=\frac{18}{3000}=0,006$$

Аналоги к этому заданию:

Задание 682

В чем­пи­о­на­те по гим­на­сти­ке участ­ву­ют 20 спортс­ме­нок: 8 из Рос­сии, 7 из США, осталь­ные — из Китая. По­ря­док, в ко­то­ром вы­сту­па­ют гим­наст­ки, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что спортс­мен­ка, вы­сту­па­ю­щая пер­вой, ока­жет­ся из Китая.

Ответ: 0,25
Скрыть

Количество спортсменок из Китая составляет: $$n=20-8-7=5$$
Вероятность равна отношению количество спортсменок из Китая к общему количеству спортсменок: $$P=\frac{n}{N}=\frac{5}{20}=0,25$$

Аналоги к этому заданию:

Задание 681

В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что орел вы­па­дет ровно один раз.

Ответ: 0,5
Скрыть

Всего количество исходов $$N=2^{2}=4$$(количество сторон монеты в степени равной количеству бросков), исходов, когда орел ровно один раз всего 2 (ОР и РО). Тогда вероятность составляет $$P=\frac{n}{N}=0,5$$

Аналоги к этому заданию:

Задание 680

В слу­чай­ном экс­пе­ри­мен­те бро­са­ют две иг­раль­ные кости. Най­ди­те ве­ро­ят­ность того, что в сумме вы­па­дет 8 очков. Ре­зуль­тат округ­ли­те до сотых.

Ответ: 0,14
Скрыть

Если бросается две кости одновременно, то общее количество исходов вычисляется как: $$N=6^{2}=36$$ (количество сторон предмета возводится в степень количества бросков). Исходы, при которых может получится 8 очков следующие (первое число - первый кубик, второе число - второй кубик): 2+6 ; 3+5 ; 4+4 ; 5+3 ; 6+2 - то есть $$n=5$$
$$P=\frac{5}{36}\approx 0,14$$

Аналоги к этому заданию:

Задание 679

На та­рел­ке 16 пи­рож­ков: 7 с рыбой, 5 с ва­ре­ньем и 4 с виш­ней. Юля на­у­гад вы­би­ра­ет один пи­ро­жок. Най­ди­те ве­ро­ят­ность того, что он ока­жет­ся с виш­ней.

Ответ: 0,25
Скрыть

Для этого необходимо количество пирожков с вишней поделить на общее количество пирожков всех: $$P=\frac{4}{16}=0,25$$

Аналоги к этому заданию:

Задание 678

В фирме такси в дан­ный мо­мент сво­бод­но 20 машин: 10 чер­ных, 2 жел­тых и 8 зе­ле­ных. По вы­зо­ву вы­еха­ла одна из машин, слу­чай­но ока­зав­ша­я­ся ближе всего к за­каз­чи­це. Най­ди­те ве­ро­ят­ность того, что к ней при­е­дет зе­ле­ное такси.

Ответ: 0,4
Скрыть

Для этого необходимо количество зеленых машин поделить на общее количество машин: $$P=\frac{8}{20}=0,4$$

Аналоги к этому заданию:

Задание 677

На эк­за­мен вы­не­се­но 60 во­про­сов, Ан­дрей не вы­учил 3 из них. Най­ди­те ве­ро­ят­ность того, что ему по­па­дет­ся вы­учен­ный во­прос.

Ответ: 0,95
Скрыть

Андрей выучил: $$60-3=57$$ вопросов. В таком случае вероятность того, что ему попадется выученный: $$P=\frac{57}{60}=0,95$$