331 вариант Алекса Ларина. Разбор ЕГЭ математика 2021.
Больше разборов на моем ютуб-канале
Задание 2
На рисунке показано суточное количество осадков, выпадавших с 10 по 20 октября. По горизонтали указываются числа месяца, по вертикали – количество осадков в миллиметрах, выпавших в соответствующий день. Для наглядности точки на рисунке соединены линией. Определите по рисунку, сколько дней указанного периода не было осадков.
Задание 7
На рисунке изображен график функции $$y=f'(x)$$ , где $$f'(x)$$ ‐ производная функции $$y=f(x)$$ , определенной на интервале $$(-1;12)$$ .
Значение какой из сумм:
- $$f(8)+f(10)$$
- $$f(5)+f(7)$$
- $$f(6)+f(8)$$
- $$f(7)+f(9)$$
будет наименьшим? В ответе укажите номер этой суммы.
Задание 10
Для получения на экране увеличенного изображения лампочки в лаборатории используется собирающая линза с главным фокусным расстоянием f=80 см. Расстояние d1 от линзы до лампочки может изменяться в пределах от 70 до 120 см, а расстояние d2 от линзы до экрана – в пределах от 300 до 400 см. Изображение на экране будет четким, если выполнено отношение $$\frac{1}{d_{1}}+\frac{1}{d_{2}}=\frac{1}{f}$$. Укажите, на каком наименьшем расстоянии от линзы можно поместить лампочку, чтобы ее изображение на экране было четким. Ответ дайте в сантиметрах.
Задание 11
Из пункта A в пункт B, расположенный в 24 км от A, одновременно отправились велосипедист и пешеход. Велосипедист прибыл в B на 4 ч раньше пешехода. Если бы велосипедист ехал со скоростью, меньшей на 4км/ч, то на путь из A в B он затратил бы вдвое меньше времени, чем пешеход. Найдите скорость пешехода.
Задание 16
В треугольнике ABC AB=3, $$\angle ABC=\arcsin \frac{3}{5}$$. Хорда KN окружности, описанной около треугольника ABC, пересекает отрезки AC и BC в точках M и L соответственно. Известно, что $$\angle ABC=\angle CML$$, площадь четырёхугольника ABLM равна 2, LM=1.
Задание 17
Первичная информация разделяется по серверам 1 и 2 и обрабатывается на них. С сервера 1 при объёме t2 Гбайт входящей в него информации выходит 30t Гбайт, а с сервера 2 при объёме t2 Гбайт входящей в него информации выходит 36t Гбайт обработанной информации при условии, что $$15\leq t\leq 65$$. Каков наибольший общий объём выходящей информации при общем объёме входящей информации в 3904 Гбайт?
Задание 19
На психологический тренинг пришли m человек. В начале работы психолог попросил каждого пришедшего написать записку с вопросом к любому другому из участников (ровно одному). После этого в группу А были отобраны те, кто получил не более 1 вопроса. m