325 вариант Алекса Ларина. Разбор ЕГЭ математика 2021.
Задание 1
В 14-этажном доме расположены 336 квартир по 4 квартиры на этаже. Между этажами по два лестничных пролета, по 11 ступенек каждый. Лифты сломались, а старший по дому обходит квартиры в порядке возрастания номеров (начиная с первой). Прохождение каждых 50 ступенек обходится ему появлением новой мозоли. Сколько мозолей он заработал за вечер, обойдя 170 квартир и выйдя из дома (ступеньки для входа на первый этаж не считаются)?
Задание 2
На диаграмме показана среднемесячная температура воздуха в Новосибирске за каждый месяц 1892 года. По горизонтали указываются месяцы, по вертикали - температура в градусах Цельсия. Определите по диаграмме, какой была средняя температура (в градусах Цельсия) в самом прохладном летнем месяце.
Задание 3
Задание 4
Задание 5
Решите уравнение $${\left(x+3\right)}^2={\left(x+3\right)}^4$$. В ответе укажите меньший корень.
$${\left(x+3\right)}^2={\left(x+3\right)}^4;\ $$пусть $${\left(x+3\right)}^2=y\ge 0:$$
<div class="respons-table-block">$$y=y^2\to y\left(y-1\right)=0\leftrightarrow \left[ \begin{array}{c} {\left(x+3\right)}^2=0 \\ {\left(x+3\right)}^2=1 \end{array} \right.\leftrightarrow \left[ \begin{array}{c} x=-3 \\ x=-2 \\ x=-4 \end{array} \right.\to $$</div>
Ответ: -4
Задание 6
Равнобокая трапеция АВСD разбивается диагональю АС на два равнобедренных треугольника. Определите, чему равен больший угол трапеции. Ответ дайте в градусах.
Задание 7
На графике функции $$у\ =\ f\ (x)$$ отмечены четыре точки с абсциссами $$-3,\ -1,\ 1,\ 3.$$ По данному графику определите, в какой из этих точек значение производной $$f'(x)$$ будет наибольшим. (В ответе укажите абсциссу этой точки).
Задание 8
Ребро куба $$ABCDA_1B_1C_1D_1$$ равно $$2\sqrt{5}$$. Точка $$К$$ - середина ребра $$CD$$. Найдите расстояние между прямыми $$AD$$ и $$D_1K.$$
Задание 9
Найдите значение выражения $${{\log }_2 \sqrt{\sqrt{3}-1}\ }+{{\log }_4 (1+\sqrt{3})\ }$$
Задание 10
По закону Ома для полной цепи сила тока, измеряемая в амперах, равна $$I=\frac{\varepsilon }{R+r}$$, где $$\varepsilon $$ - ЭДС источника (в вольтах), $$r=2,4$$ Ом - его внутреннее сопротивление, R - сопротивление цепи (в омах). При каком наименьшем сопротивлении цепи сила тока будет составлять не более 24\% от силы тока короткого замыкания $$I_1=\frac{\varepsilon }{r}$$? (Ответ выразите в омах).
Задание 11
Первые 4 дня на строительстве объекта трудились 13 рабочих, после чего к ним присоединились еще трое, а спустя 3 дня шестеро рабочих были переведены на другой объект. За какой срок (в днях) будет построен данный объект, если шесть рабочих могут выполнить это задание за 20 дней?
Задание 12
Найдите наименьшее значение функции $$f\left(x\right)=5-{{\log }_2 (31-x^2-2x)\ }$$
Задание 13
а) Решите уравнение $${\cos (x+\frac{\pi }{3})\ }\cdot {\cos \left(x-\frac{\pi }{3}\right)\ }=-\frac{1}{2}$$
б) Укажите корни этого уравнения, принадлежащие отрезку $$[-\frac{\pi }{2};2\pi ]$$
а) $${\cos (x+\frac{\pi }{3})\ }\cdot {\cos \left(x-\frac{\pi }{3}\right)\ }=-\frac{1}{2}\leftrightarrow $$ $$\leftrightarrow \frac{1}{2}({\cos \left(x+\frac{\pi }{3}+x-\frac{\pi }{3}\right)\ }+{\cos \left(x+\frac{\pi }{3}-x+\frac{\pi }{3}\right)\ }=-\frac{1}{2}\leftrightarrow $$ $$\leftrightarrow {\cos 2x\ }+{\cos \frac{2\pi }{3}\ }=-1\leftrightarrow {\cos 2x\ }=-1+\frac{1}{2}=-\frac{1}{2}\leftrightarrow $$ $$\leftrightarrow 2x=\pm \frac{2\pi }{3}+2\pi n,n\in Z\leftrightarrow x=\pm \frac{\pi }{3}+\pi n,\ n\in Z.$$
б) С помощью единичной окружности отберем корни на $$\left[-\frac{\pi }{2};2\pi \right].$$ $$1)-\frac{\pi }{3};\ 2)-\frac{\pi }{3}+2\pi =\frac{5\pi }{3};3)\ 0+\frac{\pi }{3}=\frac{\pi }{3};4)\ \pi -\frac{\pi }{3}=\frac{2\pi }{3};5)\ \pi +\frac{\pi }{3}=\frac{4\pi }{3}$$
Задание 14
Дан прямой круговой конус с вершиной М. Осевое сечение конуса - треугольник с углом $$120{}^\circ $$ при вершине М. Образующая конуса равна $$2\sqrt{3}$$. Через точку М проведено сечение конуса, перпендикулярное одной из образующих.
А) Докажите, что получившийся в сечении треугольник - тупоугольный
Б) Найдите расстояние от центра О основания конуса до плоскости сечения.
Задание 15
Решите неравенство: $${{\log }_{0,25} (1-6x)\ }\cdot {{\log }_{\left(1-x\right)} \left(\frac{1}{2}\right)\ }>1$$
$${{\log }_{0,25} (1-6x)\ }\cdot {{\log }_{\left(1-x\right)} \left(\frac{1}{2}\right)\ }>1\leftrightarrow {{\log }_{{0,5}^{-2}} \left(1-6x\right)\ }\cdot \frac{1}{{{\log }_{0,5} \left(1-x\right)\ }}>1\leftrightarrow$$ $$\leftrightarrow \frac{\frac{1}{2}{{\log }_{0,5} \left(1-6x\right)\ }}{{{\log }_{0,5} \left(1-x\right)\ }}\leftrightarrow \left\{ \begin{array}{c} {{\log }_{\left(1-x\right)} \left(1-6x\right)\ }>2 \\ 1-6x>0 \\ 1-x>0 \\ 1-x\ne 1 \end{array} \right.\leftrightarrow$$ $$\leftrightarrow \left\{ \begin{array}{c} \left(1-6x-{\left(1-x\right)}^2\right)\left(1-x-1\right)>0(1) \\ x<\frac{1}{6} \\ x<1 \\ x\ne 0 \end{array} \right.$$
$$(1): \left(1-6x-1+2x-x^2\right)\left(-x\right)>0\leftrightarrow \left(-x^2-4x\right)\left(-x\right)>0\leftrightarrow x^2\left(x+4\right)>0\leftrightarrow $$ $$\leftrightarrow x>-4.$$ Тогда: $$x\in (-4;0)\cup (0;\frac{1}{6})$$.
Задание 16
В остроугольном треугольнике АВС провели высоты $$AH_1$$ и $$CH_2$$, затем провели луч МН, который пересекает описанную около треугольника АВС в точке К, где М - середина АС, а Н - точка пересечения высот.
А) Докажите, что $$НМ=МК$$
Б) Найдите площадь треугольника ВСК, если $$\angle ABC=60{}^\circ ;\ \angle BAC=45{}^\circ ;\ AC=1$$
Задание 17
5-го января 2020-го года Андрей планирует положить на депозит вклад размером 3 миллиона рублей. Первые три года 2-го января банк начисляет 10% на сумму вклада, а в последующие годы банк начисляет 5% на сумму вклада.
4-го января каждого года Андрей делает дополнительный взнос на вклад так, чтобы после этого величина вклада на 5 января была больше величины вклада на 5 января прошлого года на одно и то же число. Определить общий размер начислений банка, если 3-го января 2031-го года на вкладе будет лежать 24,15 миллиона рублей.
3 января 2031 года на вкладе будет сумма на 5 января 2030 года, увеличенная на 5%: $$S\cdot 1,05=24,15\to S=23$$ млн. Т.к. вклад на 5% увеличивается равномерно, то каждый год будет в сумме расти на $$\frac{23-3}{2030-2020}=2$$ млн.
2020: № года: - ; вклад 2 января: - ; добавил на вклад 4 января: - ; вклад 5-го января: 3
2021: № года: 1; вклад 2 января: $$3+0,1\cdot 3$$; добавил на вклад 4 января: $$5-3,3=1,7$$; вклад 5-го января: $$5$$
2022: № года: 2; вклад 2 января: $$5+0,1\cdot 5$$; добавил на вклад 4 января: $$7-5,5=1,5$$; вклад 5-го января: $$7$$
2023: № года: 3; вклад 2 января: $$7+0,1\cdot 7$$; добавил на вклад 4 января: $$9-7,7=1,3$$; вклад 5-го января: $$9$$
2024: № года: 4; вклад 2 января: $$9+0,05\cdot 9$$; добавил на вклад 4 января: $$1,55$$; вклад 5-го января: $$11$$
2025: № года: 5; вклад 2 января: $$11+0,05\cdot 11$$; добавил на вклад 4 января: $$1,45$$; вклад 5-го января: $$13$$
2026: № года: 6; вклад 2 января: $$13+0,05\cdot 13$$; добавил на вклад 4 января: $$1,35$$; вклад 5-го января: $$15$$
$$\dots $$
2030: № года: 10; вклад 2 января: $$21+0,05\cdot 21$$; добавил на вклад 4 января: $$0,95$$; вклад 5-го января: $$23$$
2031: № года: 11; вклад 2 января: $$23+0,05\cdot 23=24,15$$;
Начисления банка составят: $$0,1\left(3+5+7\right)+0,05(9+11+13+15+17+19+21+23)=$$ $$=0,1\cdot 15+0,05\cdot \frac{9+23}{2}\cdot 8=1,5+6,4=7,9\ $$млн. руб.
Задание 19
Назовем натуральное число «замечательным», если оно самое маленькое среди натуральных чисел с такой же, как у него, суммой цифр.
а) Чему равна сумма цифр две тысячи пятнадцатого замечательного числа?
б) Сколько существует двухзначных замечательных чисел?
в) Какой порядковый номер замечательного числа 5999?
г) Чему равна сумма всех четырехзначных замечательных чисел?