313 вариант Алекса Ларина. Разбор ЕГЭ математика 2020.
Задание 2
На графике изображена зависимость атмосферного давления ( в мм ртутного столба) от высоты местности над уровнем моря (в километрах). На сколько миллиметров ртутного столба атмосферное давление на высоте Эвереста ниже атмосферного давления на высоте Народной?
Задание 10
Амплитуда колебаний маятника зависит от частоты вынуждающей силы, определяемой по формуле$$A(\omega)=\frac{A_{0}\omega_{p}^{2}}{|\omega_{p}^{2}-\omega^{2}|}$$, где $$\omega$$ – частота вынуждающей силы (в с-1), $$A_{0}$$ – постоянный параметр, $$\omega_{p}=500$$ с-1 – резонансная частота. Найдите максимальную частоту $$\omega$$, меньшую резонансной, для которой амплитуда колебаний превосходит величину $$A_{0}$$ не более чем на 56,25%. Ответ выразите в с-1.
Задание 13
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку $$[-\frac{\pi}{2};\frac{\pi}{2}]$$
Задание 14
В правильной треугольной пирамиде МАВС с основанием АВС стороны основания равны 6, а боковые ребра равны 8. На ребре АС находится точка D, на ребре АВ – точка Е, а на ребре АМ – точка L. Известно, что CD=BE=AL=2.
Задание 16
На гипотенузе KL равнобедренного прямоугольного треугольника KLM вне треугольника построен квадрат KLPQ. Прямая MQ пересекает гипотенузу KL в точке N.
Задание 17
Фирма по производству мебели выпускает две модели спальных гарнитуров – А и В. Их производство ограничено наличием сырья (качественных досок) и временем машинной обработки. Для изготовления гарнитура модели А требуется 24 м2 досок и 5 часов машинного времени, а для модели В – 40 м2 досок и 11 часов машинного времени. Фирма может получить от поставщика до 600 м2 досок в неделю. Возможное время работы машин, имеющихся в распоряжении фирмы, составляет 140 часов в неделю. Изготовление гарнитура модели А приносит фирме 5000 рублей дохода, а модели В – 9000 рублей дохода. Сколько гарнитуров каждой модели следует выпускать фирме в неделю, чтобы прибыль фирмы была как можно больше?
Задание 19
В рамках проекта ежегодной аттестации учителей начальных классов, в котором приняли участие два города А и В, 51 учитель написал тест. Известно, что из каждого города тест написали хотя бы два учителя, причем каждый набрал целое положительное количество баллов, а после предварительных подсчетов средний балл в каждом городе оказался целым числом. Затем один из учителей, писавших тест, переехал из города А в город В, и средние баллы по городам пришлось пересчитать.