301 вариант Алекса Ларина. Разбор ЕГЭ математика 2020.
Решаем ЕГЭ 301 вариант Ларина. Подробное решение 1,2,3,4,5,6,7,8,9,10,11,12 заданий тренировочного варианта ЕГЭ Ларина №301 (alexlarin.com)
Решаем ЕГЭ 301 вариант Ларина. Подробное решение 13,14,15,16,17,18,19 заданий тренировочного варианта ЕГЭ Ларина №301 (alexlarin.com)
Задание 2
На графике изображена зависимость крутящего момента двигателя от числа его оборотов в минуту. На оси абсцисс откладывается число оборотов в минуту, на оси ординат – крутящий момент в Н∙м. Скорость автомобиля (в км/ч) приближенно выражается формулой v = 0,036n, где n – число оборотов двигателя в минуту. С какой наибольшей скоростью может двигаться автомобиль, чтобы крутящий момент был равен 140 Н∙м? Ответ дайте в километрах в час.
Задание 4
В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,5 погода завтра будет такой же, как и сегодня. Сегодня 23 февраля, погода в Волшебной стране хорошая. Найдите вероятность того, что 8 марта в Волшебной стране будет отличная погода (Считать, что 2020‐м году в феврале 29 дней).
Задание 13
Дано уравнение $$\sin 2x+\sqrt{3}(\cos x-\sin x)=1,5$$
Задание 14
В правильной четырехугольной призме ABCDA1B1C1D1 точка К – середина ребра АВ, точка Р – середина ребра ВС. Через точки К, Р, D1 проведена плоскость $$\alpha$$.
Задание 16
В треугольнике АВС сторона ВC больше стороны АC. Биссектриса CL пересекает описанную около треугольника АВС окружность в точке К. Окружность, описанная около треугольника АКL вторично пересекает прямую АС в точке Р.
Задание 17
15‐го декабря 2018 года Саша и Паша взяли в банке одинаковые суммы в кредит на 12 месяцев. Банк предложил им похожие схемы погашения долга. Условия возврата кредита у Саши оказались следующие:
У Паши условия возврата кредита были таковы:
Когда в декабре 2019 года Саша и Паша рассчитались со своими кредитами, выяснилось, что один из них выплатил за год банку на 429 тыс. руб. больше, нежели другой. Определите, какая сумма была взята каждым в кредит.
Задание 19
Известно, что m и n – натуральные числа.