Перейти к основному содержанию

299 вариант Алекса Ларина. Разбор ЕГЭ математика 2020.

Решаем ЕГЭ 299 вариант Ларина. Подробное решение 1,2,3,4,5,6,7,8,9,10,11,12 заданий тренировочного варианта ЕГЭ Ларина №299 (alexlarin.com)

Решаем ЕГЭ 299 вариант Ларина. Подробное решение 13,14,15,16,17,18,19 заданий тренировочного варианта ЕГЭ Ларина №299 (alexlarin.com)

 
Аналоги к этому заданию:

Задание 1

С двух полей, первое из которых по площади вдвое меньше второго, собрали урожай свёклы. Средняя урожайность составила 150 ц/га, в то время, как на первом поле собрали по 156 ц/га. Какова урожайность свёклы на втором поле?

Ответ:
 
Аналоги к этому заданию:

Задание 2

На рисунке показан график зависимости высоты пирога от времени его нахождения в духовке. По горизонтальной оси откладывается время в часах, по вертикальной – высота в см. Пока пирог не поднимется хотя бы в 1,5 раза, духовку открывать нельзя. Определите по графику, через какое минимальное время можно будет открыть духовку. Ответ дайте в часах.

Ответ:
 
Аналоги к этому заданию:

Задание 3

Основания равнобедренной трапеции равны 9 и 21, боковая сторона 10. Найдите длину диагонали трапеции.

Ответ:
 
Аналоги к этому заданию:

Задание 4

Из полной колоды карт (52 листа) вынимают сразу две карты. Одну из них смотрят – она оказалась дамой. После этого две вынутые карты перемешивают и одну из них берут наугад. Найти вероятность того, что она окажется тузом. Результат округлите до сотых.

Ответ:
 
Аналоги к этому заданию:

Задание 5

Решите уравнение $$\log_{\sin \frac{\pi}{4}}(x+2)=4$$

Ответ:
 
Аналоги к этому заданию:

Задание 6

На боковой стороне CB равнобедренного (AB=BC) треугольника ABC выбрана точка K. Оказалось, что CA= AK =KB. Найдите $$\angle$$ABC. Ответ дайте в градусах.

Ответ:
 
Аналоги к этому заданию:

Задание 7

На рисунке изображен график функции y=f(x). На оси абсцисс отмечены точки ‐2;2;3;4. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.

Ответ:
 
Аналоги к этому заданию:

Задание 8

Цилиндрическая кастрюля, диаметр дна которой равен 30 см, наполнена водой. Какое минимальное число кастрюль той же высоты и с диаметром дна, равным 15 см, потребуется для того, чтобы перелить в них эту воду?

Ответ:
 
Аналоги к этому заданию:

Задание 9

Найдите значение выражения $$(3^{\sqrt{7}}\cdot (\frac{1}{3})^{\sqrt{5}})^{\sqrt{7}+\sqrt{5}}$$

Ответ:
Аналоги к этому заданию:

Задание 10

На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле: $$F_{A}=\rho gl^3$$ , где l – длина ребра куба в метрах, А=1000 кг/м3 – плотность воды, а g – ускорение свободного падения (считайте g =10 Н/кг). Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше, чем 33750 Н? Ответ выразите в метрах.

Ответ:
 
Аналоги к этому заданию:

Задание 11

Три автоматические линии выпускают одинаковую продукцию, но имеют разную производительность. Производительность всех трёх одновременно действующих линий в 1,5 раза выше производительности первой и второй линий, работающих одновременно. Сменное задание для первой линии вторая и третья линии, работая одновременно, могут выполнить на 4 ч 48 мин быстрее, чем его выполняет первая линия; это же задание вторая линия выполняет на 2 ч быстрее по сравнению с первой линией. Найти время выполнения первой линией своего сменного задания.

Ответ:
 
Аналоги к этому заданию:

Задание 12

Найдите наименьшее значение функции $$f(x)=(x-2)(x-1)(x+1)(x+2)$$ на отрезке [‐1;2].

Ответ:
 
Аналоги к этому заданию:

Задание 13

а) Решите уравнение $$\sqrt{\sin(\frac{\pi}{4}+x)\cos(\frac{\pi}{4}-x)}\cdot \cos x=\frac{1}{2\sqrt{2}}$$ 
б) Укажите корни этого уравнения, принадлежащие отрезку $$[-\frac{\pi}{4};\pi]$$
Ответ:
 
Аналоги к этому заданию:

Задание 14

Основанием пирамиды SABCD является прямоугольник ABCD, в котором ВС=2АВ. Диагонали прямоугольника ABCD пересекаются в точке О. Отрезок SO является высотой пирамиды SABCD. Из вершин А и С опущены перпендикуляры АР и CQ на ребро SB.

а) Докажите, что BP:PQ=1:3
б) Найдите двугранный угол пирамиды при ребре SB, если SB=BC.
Ответ:
 
Аналоги к этому заданию:

Задание 15

Решите неравенство: $$\frac{\log_{0,2}(x-2)}{(4^{x}-8)(|x|-5)}\geq 0$$
Ответ:
 
Аналоги к этому заданию:

Задание 16

Окружность с центром на диагонали АС трапеции ABCD (BC||AD) проходит через вершины А и В, касается стороны CD в точке С и пересекает основание AD в точке Е так, что CD=$$6\sqrt{13}$$, AE=8.

а) Найдите площадь трапеции ABCD
б) Прямые CD и ВЕ пересекаются в точке Q. Найдите BQ.
Ответ:
 
Аналоги к этому заданию:

Задание 17

Завод закупает станки двух типов, на приобретение которых выделено 34 млн. рублей. Станок первого типа занимает площадь 7 м2 (с учетом проходов), производит за смену 5000 единиц продукции и стоит 4 млн. рублей. Станок второго типа занимает площадь 4 м2 (с учетом проходов), производит за смену 3000 единиц продукции и стоит 3 млн. рублей. Станки должны быть размещены на площади, не превышающей 50 м2. Сколько станков каждого типа нужно приобрести, чтобы производить за смену наибольшее количество продукции?

Ответ:
 
Аналоги к этому заданию:

Задание 18

Найдите все значения параметра a, при каждом из которых система уравнений $$\left\{\begin{matrix} y=a(x-3)\\\frac{1}{\log_{x}2} +\frac{1}{\log_{y}2} =1 \end{matrix}\right.$$ не имеет решений

Ответ:
 
Аналоги к этому заданию:

Задание 19

Имеется 2 млн. рублей, которые надо полностью истратить на покупку путевок в дома отдыха. Путевки есть на 15, 27 и 45 дней. Стоимость их соответственно 21 тыс. руб., 40 тыс. руб. и 60 тыс. руб.

а) Можно ли купить 15 путевок первого типа?
б) Какое наименьшее возможно число путевок второго типа можно купить?
в) Сколько и каких путевок надо купить, чтобы сделать число дней отдыха наибольшим?
Ответ: