285 вариант Алекса Ларина. Разбор ЕГЭ математика 2020.
Решаем ЕГЭ 285 вариант Ларина. Подробное решение 1,2,3,4,5,6,7,8,9,10,11,12 заданий тренировочного варианта ЕГЭ Ларина №285 (alexlarin.com)
Решаем ЕГЭ 285 вариант Ларина. Подробное решение 13,14,15,16,17,18,19 заданий тренировочного варианта ЕГЭ Ларина №285 (alexlarin.com)
Задание 1
Московский муравей решил навестить родственников в Санкт‐Петербурге и отправился пешком со скоростью 5 см/мин. Во сколько раз быстрее он доберется до Питера, поехав на «Сапсане», если расстояние между Москвой и Санкт‐Петербургом равно 648 км, а время поездки на «Сапсане» ‐ 3 часа 45 минут?
Задание 4
Профессор Российского заборостроительного университета Аполлон Иванович подсчитал, что Сюзанна Зайцева отсутствует на его лекциях с вероятностью 0,7, а Виолетта Волкова ‐ с вероятностью 0,8 Вероятность того, что обе девушки присутствуют на лекции равна 0,12. Какова вероятность того, что на следующую лекцию к Аполлону Ивановичу не придет ни Сюзанна, ни Виолетта?
Задание 9
Для сматывания кабеля на заводе используют лебёдку, которая равноускоренно наматывает кабель на катушку. Угол, на который поворачивается катушка, изменяется со временем по закону , $$\phi=\omega t+\frac{\beta t^{2}}{2}$$ где t - время в минутах, $$\omega=45^{\circ}$$/мин ‐ начальная угловая скорость вращения катушки, а $$\beta=6^{\circ}$$/мин2 ‐ угловое ускорение, с которым наматывается кабель. Рабочий должен проверить ход его намотки не позже того момента, когда угол намотки $$\phi$$ достигнет 1350°. Определите время после начала работы лебёдки, не позже которого рабочий должен проверить её работу. Ответ выразите в минутах.
Задание 10
На практическом занятии в Российском заборостроительном университете Сюзанна Зайцева и Виолетта Волкова красили забор вокруг здания университета следующим образом – сначала Виолетта прокрашивает полосу 10 см красной краской, затем Сюзанна прокрашивает полосу 10 см синей краской, потом девушки поочереди прокрашивают полосу каждая своим цветом, причем каждая последующая полоса проводится на 10 см шире, чем предыдущая полоса того же цвета. Когда забор был покрашен. оказалось, что Виолетта провела на 1 полосу больше, чем Сюзанна. Сколько полос провела Сюзанна, если длина забора 160 метров?
Задание 12
а) Решите уравнение $$\log_{3-4\cos^{2}x}(9-16\cos^{4}x)=2+\frac{1}{\log_{2}(3-4\cos^{2}x)}$$
б) Укажите корни этого уравнения, принадлежащие отрезку $$[-\frac{\pi}{3};\frac{2\pi}{3}]$$
А) ОДЗ: $$\left\{\begin{matrix}3-4\cos^{2}x>0&\\3-4\cos^{2}x\neq1&\\9-16\cos^{4}x>0&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}\cos^{2}x<\frac{3}{4}&\\\cos^{2}x\neq1&\\\cos^{4}x<\frac{9}{16}&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}\cos x\in(-\frac{\sqrt{3}}{2};\frac{\sqrt{3}}{2})&\\\cos x\neq\pm1&\\\cos^{2}x\in(-\frac{3}{4};\frac{3}{4})&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$x\in(-\frac{5\pi}{6}+2\pi n;-\frac{\pi}{6}+2\pi n)\cup(\frac{\pi}{6}+2\pi n;\frac{5\pi}{6}+2\pi n)$$
Решение: $$\log_{3-4\cos^{2}x}(3-4\cos^{2}x)(3+4\cos^{2}x)=2+\log_{3-4\cos^{2}x}2$$
$$1+\log_{3-4\cos^{2}x}(3+4\cos^{2}x)=2+\log_{3-4\cos^{2}x}2$$
$$\log_{3-4\cos^{2}x}(3+4\cos^{2}x)=\log_{3-4\cos^{2}x}(3-4\cos^{2}x)+\log_{3-4\cos^{2}x}2$$
$$3+4\cos^{2}x=6-8\cos^{2}x$$
$$12\cos^{2}x=3$$ $$\Rightarrow$$ $$\cos^{2}x=\frac{1}{4}$$ $$\Rightarrow$$ $$\cos x=\pm\frac{1}{2}$$ $$\Rightarrow$$ $$x=\pm\frac{\pi}{3}+\pi n$$
Б) С помощью тригономентрической окружности найдем корни на данном отрезке: $$\frac{\pi}{3}+\pi n$$: $$\frac{\pi}{3}$$; $$-\frac{\pi}{3}+\pi n$$: $$-\frac{\pi}{3};\frac{2\pi}{3}$$
Задание 13
Дана треугольная пирамида ABCD объемом 40. Через вершину А и середину М ребра ВС проведена плоскость, пересекающая ребро BD в точке N. Расстояние от вершины В до этой плоскости равно 4, а площадь треугольника AMN равна 5.
А) 1) Пусть $$h$$ - высота $$BNAM$$ (из $$B\perp AMN$$) $$\Rightarrow$$ $$h=4$$ $$\Rightarrow$$ $$V_{BNAM}=\frac{1}{3}\cdot5\cdot4=\frac{20}{3}$$
2) $$\frac{V_{ABCD}}{V_{BNAM}}=\frac{BD\cdot BA\cdot BC}{BN\cdot BA\cdot BM}=\frac{2BD}{BN}=\frac{40}{\frac{20}{3}}=\frac{6}{1}$$ $$\Rightarrow$$ $$\frac{BD}{BN}=\frac{3}{1}$$ $$\Rightarrow$$ $$BN=\frac{1}{3}BD$$; $$ND=\frac{2}{3}BD$$ $$\Rightarrow$$ $$BN\div ND=1\div2$$
Б) 1) Пусть $$BF\perp AM$$; т.к. $$NB\perp(ABC)$$, то $$BF$$ - проекция $$NF$$ на $$(ABC)$$ $$\Rightarrow$$ $$NF\perp AM$$ $$\Rightarrow$$ $$\angle NFB$$ - между $$(NAM)$$ и $$(ABC)$$ $$AM\perp(NFB)$$
2) $$BN=\frac{1}{3}BD=5$$. Пусть $$BE\perp NF$$, но $$BE\perp AM$$ $$\Rightarrow$$ $$BE\perp(NAM)$$ $$\Rightarrow$$ $$BE=h=4$$
3) Из $$\bigtriangleup NBF$$: $$BE$$ - высота $$\Rightarrow$$ $$\angle NBF=\angle NFB$$ $$\Rightarrow$$ $$\cos\angle NBE=\cos\angle NFB=\frac{BE}{BN}=0,8$$
Задание 14
$$x^{2}\log_{4}^{2}x+10\log_{3}^{2}x\leq x\log_{4}\cdot\log_{3}x^{7}$$
ОДЗ: $$x^{2}\log_{4}^{2}x-7x\log_{4}x\cdot\log_{3}x+10\log_{3}^{2}x\leq0$$
$$\left[\begin{matrix}(\frac{x\cdot\log_{4}x}{\log_{3}x})^{2}-7\cdot\frac{x\cdot\log_{4}x}{\log_{3}x}+10\leq0&\\\log_{3}x=0&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left[\begin{matrix}(x\cdot\frac{\log_{x}3}{\log_{x}4})^{2}-7\cdot x\cdot\frac{x\cdot\log_{x}3}{\log_{x}4}+10\leq0&\\x=1&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$(x\cdot\log_{4}^{3})^{2}-7(x\cdot\log_{4}^{3})+10\leq0$$
Замена: $$x\cdot\log_{4}^{3}=y$$ $$\Rightarrow$$ $$y^{2}-7y+10\leq0$$ $$\Leftrightarrow$$ $$(y-2)(y-5)\leq0$$ $$\Rightarrow$$ $$\left\{\begin{matrix}y\geq2&\\y\leq5&\end{matrix}\right.$$
Получим: $$\left[\begin{matrix}\left\{\begin{matrix}x\cdot\log_{4}^{3}\geq2&\\x\cdot\log_{4}^{3}\leq5&\end{matrix}\right.&\\x=1&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}x\geq\frac{2}{\log_{4}^{3}}&\\x\leq\frac{5}{\log_{4}^{3}}&\end{matrix}\right.&\\x=1&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left[\begin{matrix}\left\{\begin{matrix}x\geq\log_{3}16&\\x\leq\log_{3}1024&\end{matrix}\right.&\\x=1&\end{matrix}\right.$$ $$\Rightarrow$$ $$x\in{1}\cup[\log_{3}16;\log_{3}1024]$$
Задание 15
Высоты равнобедренного остроугольного треугольника АВС, в котором АВ=ВС, пересекаются в точке О. АО=5, а длина высоты AD равна 8.
А) 1) Пусть $$BK;CH;AD$$ - высоты, $$BO=x$$; $$OK=y$$
2) $$AO=5$$ $$\Rightarrow$$ $$OD=3$$; $$\angle AOK=\angle BOD$$ $$\Rightarrow$$ $$\bigtriangleup AOK\sim\bigtriangleup BOD$$ $$\Rightarrow$$ $$\frac{AO}{BO}=\frac{OK}{OD}$$ $$\Rightarrow$$ $$\frac{5}{x}=\frac{y}{3}$$; $$xy=15$$
3) $$OH=OD=3$$ $$\Rightarrow$$ из $$\bigtriangleup AHO$$: $$AH=\sqrt{5^{2}-3^{2}}=4$$
Из $$\bigtriangleup AOK$$: $$AK=\sqrt{25-y^{2}}$$ $$\Rightarrow$$ $$AC=2\sqrt{25-y^{2}}$$
Из $$\bigtriangleup AHC$$: $$4(25-y^{2})-16=8^{2}$$ $$\Rightarrow$$ $$4(25-y^{2})=80$$ $$\Rightarrow$$ $$25-y^{2}=20$$ $$\Rightarrow$$ $$y^{2}=5$$ $$\Rightarrow$$ $$y=\sqrt{5}$$ $$\Rightarrow$$ $$x=3\sqrt{5}$$ $$\Rightarrow$$ $$BK=4\sqrt{5}$$ $$\Rightarrow$$ $$AC=2\sqrt{25-5}=4\sqrt{5}$$
Б) $$S=\frac{1}{2}\cdot4\sqrt{5}\cdot4\sqrt{5}=40$$
Задание 16
20 февраля планируется взять кредит в банке на 600 тысяч рублей на n+1 месяц. Условия его возврата таковы:
Найдите n, если банку было выплачено 691 тыс. рублей, а долг на 20‐е число n‐го месяца составлял 100 тыс. рублей.
Пусть $$S$$ - сумма кредита $$S=600$$т.р., $$a=2$$% - процент банка. За первые $$n$$ месяцев долг уменьшился на $$600-100=500$$т.р., следовательно, т.к. он уменьшался равномерно, то каждый месяц платим $$x=\frac{500}{n}$$т.р. по соновному долгу и весь начисленный за месяц процент.
Месяц | Сумма долга на 1ое число | Начисленный процент |
1 | $$S$$ | $$Sa$$ |
2 | $$S-x$$ | $$\frac{a}{10}(S-x)$$ |
3 | $$S-2x$$ | $$\frac{a}{10}(S-2x)$$ |
... | ... | .... |
$$n$$ | $$S-(n-1)x$$ | $$\frac{a}{10}(S-(n-1)x)$$ |
$$n+1$$ | $$100$$ | $$\frac{a}{10}\cdot100$$ |
Переплата составила $$691-600=91$$т.р. - сумма третьего столбца: $$\frac{a}{100}(S+S-x+S-2x+...+S-(n-1)x)+100a=91$$ $$\Leftrightarrow$$ $$\frac{a}{100}(S_{n}-x(1+2+3+...+(n-1)))+\frac{100a}{100}=91$$, т.к. $$1+2+3+...+n-1=\frac{1+(n-1)}{2}(n-1)$$, $$a=2$$, $$x=\frac{500}{n}$$; $$S=600$$ $$\Rightarrow$$ $$0,02(600n-\frac{500}{n}\cdot\frac{n(n-1)}{2})+2=91$$ $$\Rightarrow$$ $$350n+250=4450$$ $$\Rightarrow$$ $$350n=4200$$ $$n=12$$
Задание 17
Найдите все значения параметра a , при которых система уравнений $$\left\{\begin{matrix} x^{3}+7x^{2}+(13-4a)x+4a^{2}-2a+8=0\\ x^{3}+5x^{2}+(4a+13)x-4a^{2}-2a+8=0 \end{matrix}\right.$$ имеет хотя бы одно решение.
Вычтем из первого второе: $$2x^{2}+x(13-4a-4a-13)+8a^{2}=0$$
$$2x^{2}-8ax+8a^{2}=0$$
$$x^{2}-4ax+4a^{2}=0$$
$$(x-2a)^{2}=0$$ $$\Rightarrow$$ $$x=2a$$
Подставим в первое: $$8a^{3}+28a^{2}+(13-4a)2a+4a^{2}-2a+8=0$$
$$8a^{3}+28a^{2}+26a-8a^{2}+4a^{2}-2a+8=0$$
$$8a^{3}+24a^{2}+24a+8=0$$
$$a^{3}+3a^{2}+3a+1=0$$
$$(a+1)^{3}=0$$ $$\Rightarrow$$ $$a=-1$$
Задание 18
Сева каждый день заполняет таблицу 3 на 3 клетки числами 0, 2 или 4. При этом он рассчитывает день ото дня решать все более и более амбициозные задачи:
А) Да,например составим:
0 | 2 | 4 | 6 |
2 | 0 | 0 | 2 |
2 | 4 | 4 | 10 |
4 | 6 | 8 |
Б) Нет, т.к.добиться разных во всех строках и столбцах нельзя. Возможные суммы из трех нулей, двоек и четверок: $$0;2;4;6;8;10;12$$. Но если мы получаем 12, то используются 3 четверки в столбце или строке, следовательно, останутся еще 5 сумм,которые необходимо составить из 3х нулей и 3х двоек, а они дают всего четыре разные суммы: $$0;2;4;6$$, т.е.нельзя. Так же и стремя нулями. Но кроме 0 и 12 остается 5 возможных разных сумм на 6 необходимых $$\Rightarrow$$ не получится. Аналогично, если использовать не по 3 числа: сума строки или столбца не будет больше 12.
В) Из п.Б: четверг, пятница и суббота