282 вариант Алекса Ларина. Разбор ЕГЭ математика 2020.
Решаем ЕГЭ 282 вариант Ларина. Подробное решение 1,2,3,4,5,6,7,8,9,10,11,12 заданий тренировочного варианта ЕГЭ Ларина №282 (alexlarin.com)
Решаем ЕГЭ 282 вариант Ларина. Подробное решение 13,14,15,16,17,18,19 заданий тренировочного варианта ЕГЭ Ларина №282 (alexlarin.com)
Задание 1
В магазине куплены три пары одинаковых кроссовок. По условию продаж, на каждый третий проданный товар предоставляется скидка 40%. За покупку заплатили 16 900 рублей. Какова стоимость одной пары кроссовок?
Задание 2
На графике представлено годовое потребление тепловой энергии одного из городов РФ по месяцам года (в Гкал). Для наглядности точки на графике соединены прямыми. Определите по графику, сколько месяцев в этом году потребление тепловой энергии было более 12500 Гкал
Задание 3
Найти площадь заштрихованной части фигуры, изображенной на клетчатой бумаге с размером клетки 1х1. Считать $$\pi=3,14$$
Задание 4
Лейтенант ДПС Кулебякин останавливает для проверки исключительно автомобили марок «Мерседес» и «БМВ». Если водитель не пристегнут ремнем безопасности, Кулебякин выписывает штраф. Водители автомобилей «Мерседес» пристегиваются ремнем безопасности с вероятностью 0,2, а водители автомобилей «БМВ» ‐ с вероятностью 0,1. Кулебякин остановил 20 автомобилей, из которых оказалось 15 Мерседесов. Какова вероятность быть оштрафованным для выбранного наугад водителя одного из этих 20‐ти автомобилей?
Задание 5
Задание 6
Стороны треугольника равны 7, 8 и 9 см. Найти квадрат расстояния (в см2) от центра вписанной окружности до большей стороны.
Задание 7
Функция $$y=f(x)$$ определена на интервале (‐5;6). На рисунке изображен график функции $$y=f(x)$$. Найдите среди точек $$x_{1}, x_{2},...,x_{7}$$ те точки, в которых производная функции f(x) равна нулю. В ответ запишите количество найденных точек.
Производная равна 0 на графике функции там, где находятся точки экстремума (максим и минимум): x2, x5, x7 - всего три точки.
Задание 8
В треугольной пирамиде объемом 1000 см3 плоскостями, параллельными основаниям и делящими соответствующие высоты пирамиды в отношении 1:4, считая от вершины, срезаны все четыре вершины. Найти объем оставшейся части пирамиды.
Задание 9
Задание 10
Детектор полностью поглощает падающий на него свет длиной волны $$\lambda=4\cdot 10^{-7}$$ м, при этом поглощаемая мощность равна $$P=1,1\cdot 10^{-14}$$ Вт. Поглощаемая мощность связана с энергией падающего света W формулой $$P\cdot T=W$$ , где t ‐ время поглощения фотонов, а $$W=N\cdot \frac{hc}{\lambda}$$ , где $$h=6,6*10^{-34}$$ Дж∙с – постоянная Планка, $$c=3*10^{8}$$ м/с – скорость света в вакууме. Найдите, за какое время детектор поглотит $$N=4*10^{5}$$ фотонов?
Задание 11
Слили вместе 10%, 20% и 50% ‐е растворы кислоты. Масса первого раствора 2 кг, а массы второго в два раза больше массы третьего. Итоговый раствор содержит 29% кислоты. Найдите массу итогового раствора в килограммах.
Задание 12
Функция логарифма, при основании больше единицы, возрастает, следовательно, наибольшее значение она будет принимать при наибольшем значение логарифмируемой функции $$f(x)=\sin x-\cos x$$
Найдем производную и приравняем ее к нулю: $$f'(x)=\cos x+\sin x=0| :\cos x\Leftrightarrow$$$$1+tg x=0\Leftrightarrow$$$$tg x=-1\Leftrightarrow$$$$x=-\frac{\pi}{4}+\pi n, n\in Z$$
При этом из множества этих точек на отрезке $$[\frac{\pi}{2};\pi]$$ располагается $$\frac{3\pi}{4}$$, которая является точкой максимума. Тогда $$y(max)=y(\frac{3\pi}{4})=\log_{2}(\sin \frac{3\pi}{4}-\cos \frac{3\pi}{4})=$$$$\log_{2}(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2})=$$$$\log_{2} \sqrt{2}=\frac{1}{2}=0,5$$
Задание 13
А) $$\sin2x+\sqrt{2\cos x-2\cos^{3}x}=0$$ $$\Leftrightarrow$$ $$\sqrt{2\cos x-2\cos^{3}x}=-\sin2x$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}2\cos x-2\cos^{3}x=\sin^{2}2x(2)&\\-\sin2x\geq0(1)&\end{matrix}\right.$$
$$(1)$$: $$-\sin2x\geq0$$ $$\Leftrightarrow$$ $$\sin2x\leq0$$ $$\Leftrightarrow$$ $$2x\in{-\pi+2\pi n;2\pi n},n\in Z$$ $$\Leftrightarrow$$ $$x\in{-\frac{\pi}{2}+\pi n;\pi n},n\in Z$$
$$(2)$$: $$2\cos x(1-\cos^{2}x)=4\sin^{2}x\cdot\cos^{2}x$$ $$\Leftrightarrow$$ $$2\cos x\cdot\sin^{2}x-4\cos^{2}x\cdot\sin^{2}x=0$$ $$\Leftrightarrow$$ $$2\cos x\cdot\sin^{2}x(1-2\cos x)=0$$ $$\Leftrightarrow$$ $$\begin{bmatrix}\cos x=0&\\\sin x=0&\\\cos x=\frac{1}{2}&\end{bmatrix}$$ $$\Leftrightarrow$$ $$\begin{bmatrix}x=\frac{\pi}{2}+\pi n&\\x=\pi n&\\x=\pm\frac{\pi}{3}+2\pi n,n\in Z&\end{bmatrix}$$
С учетом $$(1)$$: $$x=\frac{\pi n}{2};-\frac{\pi}{3}+2\pi n,n\in Z$$
Б) На промежутке $$[-\pi;-\frac{\pi}{6}]$$: $$\frac{\pi n}{2}:-\pi;-\frac{\pi}{2};-\frac{\pi}{3}+2\pi n:-\frac{\pi}{3}$$
Задание 14
В правильной шестиугольной пирамиде SABCDEF сторона основания АВ=1, высота SO=2, точка М‐середина ребра BS.
А) 1) По свойству правильного шестиугольника: $$AF\parallel BE$$; $$AF=\frac{BE}{2}$$
2) Из $$\bigtriangleup BSE$$: $$MN$$ - средняя линия $$\Rightarrow$$ $$MN\parallel BE$$; $$MN=\frac{BE}{2}$$ $$\Rightarrow$$ $$AF=MN$$; $$AF\parallel MN$$ $$\Rightarrow$$ $$AFNM$$ - параллелограм $$\Rightarrow$$ $$AM\parallel FN$$
Б) 1) Пусть $$MM'\perp BE$$ $$\Rightarrow$$ из $$\bigtriangleup BMM'$$: $$BM=\frac{BO}{2}$$ $$\Rightarrow$$ $$M'E=\frac{3}{2}$$; $$MM'=\frac{SO}{2}=1$$ $$\Rightarrow$$ По т. Пифагора: $$ME=\sqrt{M'E^{2}-M'M^{2}}=\frac{\sqrt{13}}{2}$$
2) из $$\bigtriangleup AFE$$: $$AE=\sqrt{AF^{2}+FE^{2}-2AF\cdot FE\cos F}=\sqrt{1+1-2\cdot1\cdot1\cdot(-\frac{1}{2})}=\sqrt{3}$$
3) из $$\bigtriangleup AMM'$$: $$AM=\sqrt{M'A^{2}+M'M^{2}}$$; $$M'A=\frac{1}{2}AC=\frac{\sqrt{3}}{2}$$ $$\Rightarrow$$ $$AM=\sqrt{\frac{3}{4}+1}=\frac{\sqrt{7}}{2}$$
4) из $$\bigtriangleup AME$$: $$\cos M=\frac{AM^{2}+ME^{2}-AE^{2}}{2\cdot AM\cdot ME}=\frac{\frac{7}{4}+\frac{13}{4}-3}{2\cdot\frac{\sqrt{7}}{2}\cdot\frac{\sqrt{13}}{2}}=\frac{4}{\sqrt{13\cdot7}}$$ $$\Rightarrow$$ $$\sin M=\sqrt{1-\cos^{2}M}=\frac{5\sqrt{3}}{\sqrt{7\cdot13}}$$
5) Пусть $$EH\perp AM$$ $$\Rightarrow$$ $$EH=ME\cdot\sin M=\frac{\sqrt{13}}{2}\cdot\frac{5\sqrt{3}}{\sqrt{7\cdot13}}=2,5\sqrt{\frac{3}{7}}$$
Задание 15
ОДЗ: $$\left\{\begin{matrix}|x|>0&\\4x^{2}-x^{3}-4x\neq0&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x\neq0&\\x(4x-x^{2}-4)\neq0&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}x\neq0&\\-x(x-2)^{2}\neq0&\end{matrix}\right.$$ $$x\in(-\infty;0)\cup(0;2)\cup(2;+\infty)$$
Решение: учтем,что $$\log_{3}^{2}|x|-3\log_{3}|x|-10=(\log_{3}|x|-5)\cdot(\log_{3}|x|+2)=(\log_{3}|x|-\log_{3}243)\cdot(\log_{3}|x|+\log_{3}9)=$$ $$=(\log_{3}|x|-\log_{3}243)\cdot(\log_{3}|x|-\log_{3}\frac{1}{9})=|\log_{b}a-\log_{b}c\Leftrightarrow(b-c)\cdot(a-c)|=$$ $$=(|x|-243)\cdot(|x|-\frac{1}{9})\cdot(3-1)^{2}=||x|-|y|\Leftrightarrow(x-y)\cdot(x+y)|=(\frac{1}{2})^{x-1}-2^{x-1}=2^{1-x}-2^{x-1}=|a^{b}-a^{c}\Leftrightarrow$$ $$\Leftrightarrow a\cdot(b-c)|=(1-x-x+1)(2-1)=(2-2x)$$
С учетом разложений и ОДЗ: $$\frac{(x-243)\cdot(x+243)\cdot(x-\frac{1}{9})\cdot(x+\frac{1}{9})\cdot(2-2x)\cdot2^{2}}{-x(x-2)^{2}}\leq0$$ $$\Leftrightarrow$$ $$\frac{(x-243)\cdot(x+243)\cdot(x-\frac{1}{9})\cdot(x+\frac{1}{9})\cdot(x-1)}{x}\leq0$$
$$x\in[-243;-\frac{1}{9}]\cup(0;\frac{1}{9}]\cup[1;2)\cup(2;243]$$
Задание 16
Стороны треугольника АВС равны АВ=7, ВС=8, АС=11. Вписанная окружность касается стороны АС в точке R. А вневписанная окружность касается стороны АС в точке F и продолжений сторон АС и ВС.
А) 1) Пусть $$MB=x$$, тогда по свойству касательных $$BN=x$$. $$AM=AR=y$$; $$RC=CN=a$$; $$RF=z$$ $$\Rightarrow$$ $$FC=CI=a-z$$; $$AJ=AF=y+z$$
2) $$(*)$$ $$AF+AB=FC+BC$$ $$\Leftrightarrow$$ $$y+z+y+x=a-z+a+x$$ $$\Rightarrow$$ $$2y=2a-2z$$ $$\Rightarrow$$ $$y=a-z$$ $$(1)$$
Но $$BI=BJ$$ $$\Rightarrow$$ $$y+z+y+x=a-z+a+x$$ $$\Rightarrow$$ $$y=a-z$$
Получим, что $$(1)$$ - верно $$\Rightarrow$$ $$(*)$$ - тоже верно
Б) 1) из $$\bigtriangleup O_{1}AR$$: $$\frac{O_{1}R}{AR}=\tan O_{1}AR=\tan\frac{\angle A}{2}$$
Найдем полупериметр: $$\bigtriangleup ABC$$: $$p=\frac{7+8+11}{2}=13$$ $$\Rightarrow$$ радиус вписанной окружности $$(O_{1}R)$$ по формуле Герона: $$r=\sqrt{\frac{(13-7)(13-8)(13-11)}{13}}=\sqrt{\frac{60}{13}}$$
2) из $$\bigtriangleup ABC$$: $$\cos A=\frac{7^{2}+11^{2}-8^{2}}{2\cdot7\cdot11}=\frac{53}{77}$$ $$\Rightarrow$$ $$\sin\frac{\angle A}{2}=\sqrt{1-\frac{\cos A}{2}}=\sqrt{\frac{12}{77}}$$ $$\Rightarrow$$ $$\cos\frac{\angle A}{2}=\sqrt{1-\sin^{2}\frac{\angle A}{2}}=\sqrt{\frac{65}{77}}$$ $$\Rightarrow$$ $$\tan\frac{A}{2}=\frac{\sin\frac{\angle A}{2}}{\cos\frac{\angle A}{2}}=\sqrt{\frac{12}{65}}$$
3) $$AR=\frac{O_{1}R}{\tan\frac{A}{2}}=\sqrt{\frac{60}{13}}\cdot\sqrt{\frac{65}{12}}=5$$ $$\Rightarrow$$ $$FR=11-2\cdot5=1$$
Задание 17
Клиент оформил ипотеку в банке на 1 000 000 руб 1 июля 2019 года сроком на 5 лет. Начиная с 1 августа 2019 года, он должен выплачивать ежемесячно одну и ту же сумму. 15 июля каждого года величина долга увеличивается на 10%. Найдите сумму ежемесячной выплаты в рублях. Ответ округлите до 1 рубля в большую сторону.
Пусть $$S=10^{6}$$ - сумма ипотеки (руб) $$n=5$$ лет, $$x$$ - сумма ежемесячной выплаты (тогда $$12x$$ в год), $$a=10$$%; $$b=1+\frac{a}{100}=\frac{11}{10}$$. Составим таблицу выплат:
Год | Сумма долга на начало | Сумма долга с % |
2019 | $$S$$ | $$S+\frac{S\cdot a}{100}=S(1+\frac{a}{100})=S\cdot b$$ |
2020 | $$S\cdot b-12x$$ | $$(S\cdot b-12x)\cdot b=S\cdot b^{2}-12xb$$ |
2021 | $$S\cdot b^{2}-12xb-12x$$ | $$S\cdot b^{3}-12x\cdot b^{2}-12xb-12x$$ |
....... | ........ | ........... |
2022 | $$S\cdot b^{4}-12x\cdot\frac{b^{4}-1}{b-1}$$ | $$S\cdot b^{5}-12xb\cdot\frac{b^{4}-1}{b-1}$$ |
Заметим, что $$b^{n-1}+b^{n-2}+b^{n-3}+...+b^{0}=\frac{b^{n}-1}{b-1}$$. Тогда после 5ой выплаты имеем: $$Sb^{5}-12x\cdot\frac{b^{5}-1}{b-1}=0$$, т.к.долг был погашен. Тогда $$x=\frac{Sb^{5}(b-1)}{12(b^{5}-1)}$$. Подставим значения: $$x=\frac{10^{6}\cdot\frac{11^{5}}{10^{5}}\cdot\frac{1}{10}}{12\cdot(\frac{11^{5}}{10^{5}}-1)}\approx219,83=21984$$
Задание 19
На полке расставлен 12‐титомник Марка Твена. Можно тома расставить так, что:
Б) Да, например $$1234567891011$$
В) Пусть такая комбинация есть $$b_{1},b_{2},....,b_{12}$$. Пусть $$a_{1}.....a_{12}$$ - остатки от деления чисел на $$3$$. При этом $$a_{1}....a_{12}$$ равны $$0,1$$ или $$2,a$$ $$a_{n}+a_{n+1}+a_{n+2}+a_{n+3}=3$$ (сумма остатков от деления равна $$3$$, иначе бы сама сумма $$b_{1}+b_{2}+b_{3}+b_{4}$$ и др не были кратны $$3$$)