278 вариант Алекса Ларина. Разбор ЕГЭ математика 2020.
Решаем ЕГЭ 278 вариант Ларина. Подробное решение 1,2,3,4,5,6,7,8,9,10,11,12 заданий тренировочного варианта ЕГЭ Ларина №278 (alexlarin.com)
Решаем ЕГЭ 278 вариант Ларина. Подробное решение 13,14,15,16,17,18,19 заданий тренировочного варианта ЕГЭ Ларина №278 (alexlarin.com)
Задание 2
На рисунке жирными точками показана среднесуточная температура воздуха в Бресте каждый день с 6 по 19 июля 1981 года. По горизонтали указываются числа месяца, по вертикали ‐ температура в градусах Цельсия. Для наглядности жирные точки соединены линией.
Определите по рисунку, какой была наименьшая среднесуточная температура за указанный период. Ответ дайте в градусах Цельсия.
Задание 9
В сейсмоопасных районах действуют специальные правила монтажа оборудования. В больнице устанавливают медицинский прибор. Корпус прибора имеет форму цилиндра радиусом R см и высотой h см. Прибор стоит на полу и может перевернуться во время землетрясения, если $$\mu>\frac{2R}{h}$$, где $$\mu$$ ‐ коэффициент трения между корпусом прибора и полом. Если прибор может перевернуться, его нужно дополнительно прикрепить к стене. Какая наибольшая высота корпуса прибора допустима, чтобы можно было обойтись без дополнительного крепления? Радиус корпуса равен 34 см, а коэффициент трения $$\mu$$ равен 0,8. Ответ дайте в сантиметрах.
Задание 10
Пароход, отчалив от пристани A, спустился вниз по течению реки на 60 км до устья впадающего в реку притока и поднялся вверх по притоку (против течения) на 20 км до пристани B. Весь путь от A до B пароход прошёл за 7 часов. Скорость течения реки и скорость течения притока равны 1 км/ч. Найти собственную скорость парохода в км/ч. (Собственная скорость – скорость в неподвижной воде.)
Задание 12
а) Решите уравнение: $$\sin(\frac{\pi}{3}-2x)=-2\cos^{2}(\frac{\pi}{12}+x)-1$$;
б) Укажите корни этого уранения, принадлежащие отрезку $$\begin{bmatrix}\frac{\pi}{2}&;\frac{7\pi}{2}\end{bmatrix}$$
a) $$\sin(\frac{\pi}{3}-2x)=-2\cos^{2}(\frac{\pi}{12}+x)-1$$
$$\sin(\frac{\pi}{3}-2x)=-(2\cos^{2}(\frac{\pi}{12}+x)-1)-2$$
$$\sin(\frac{\pi}{3}-2x)=-\cos(\frac{\pi}{6}+2x)-2$$
Заметим, что : $$\cos(\frac{\pi}{6}+2x)=\cos(\frac{\pi}{2}-(\frac{\pi}{3}-2x))=\sin(\frac{\pi}{3}-2x)$$
$$\sin(\frac{\pi}{3}-2x)=-\sin(\frac{\pi}{3}-2x)-2$$
$$\sin(\frac{\pi}{3}-2x)=-2$$ $$\Rightarrow$$ $$\sin(\frac{\pi}{3}-2x)=-1$$ $$\Rightarrow$$ $$\frac{\pi}{3}-2x=-\frac{\pi}{2}+2\pi k$$ $$\Rightarrow$$ $$-2x=-\frac{5\pi}{6}+2\pi k$$ $$\Rightarrow$$ $$x=\frac{5\pi}{12}+\pi k$$, $$k\in Z$$
б) с помощью двойного неравенства отберем корни: $$\frac{\pi}{2}\leq \frac{5\pi}{12}+\pi k \leq \frac{7\pi}{2}\Leftrightarrow$$$$\frac{\pi}{12}\leq \pi k \leq \frac{37\pi}{12}\Leftrightarrow$$$$\frac{1}{12}\leq k\leq \frac{37}{12}$$.
Тогда $$k=1: x=\frac{5\pi}{12}$$; $$k=2: x=\frac{17\pi}{12}$$; $$k=2: x=\frac{29\pi}{12}$$
Задание 13
В правильной треугольной пирамиде SABC сторона основания AB равна 6, а боковое ребро SA равно 4. Точки M и N – середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.
а) Докажите, что плоскость α делит медиану CE основания в отношении 5:1, считая от точки C.
б) Найдите периметр многоугольника, являющегося сечением пирамиды SABC плоскостью α.
a) 1) Пусть $$SO$$ - высота пирамиды, $$\bigtriangleup SOB$$ - прямоугольный. Пусть $$NH\parallel SO$$ $$\Rightarrow$$ $$NH\cap OB=H$$ и $$OH=HB$$ (т.к. $$NH$$ - средняя линия)
2) Проведем через $$H$$ прямую,параллельную $$MN$$ (т.к. плоскость пересекает двугранный угол). Пусть прямая пересекает $$CB$$ и $$CA$$ в $$L$$ и $$K$$ соответственно $$\Rightarrow$$ $$(MNLK)$$ - искомое сечение.
3) $$MN\parallel AB$$; $$MN\parallel LK$$ $$\Rightarrow$$ $$LK\parallel AB$$. Пусть $$LK\cap OE=R$$, тогда $$\frac{OR}{RE}=\frac{OH}{HB}=\frac{1}{1}$$. Но $$\frac{CO}{OE}=\frac{2}{1}$$ ($$CE$$ - середина) $$\Rightarrow$$ $$\frac{CR}{RE}=\frac{2OE+\frac{1}{2}OE}{\frac{1}{2}OE}=\frac{5}{1}$$
б) 1) $$MN=\frac{1}{2}AB=3$$; $$KL=\frac{5}{6}AB=5$$;
2) из $$\bigtriangleup SBC$$: $$\cos B=\frac{SB^{2}+CB^{2}-SC^{2}}{2SB\cdot CB}=\frac{4^{2}+6^{2}-4^{2}}{2\cdot6\cdot4}=\frac{3}{4}$$
3) $$HB=\frac{1}{6}CB=1$$ $$\Rightarrow$$ из $$\bigtriangleup NBL$$: $$NH=\sqrt{NB^{2}+BL^{2}-2NB\cdot BL\cdot\cos B}=\sqrt{2^{2}+1^{2}-2\cdot2\cdot1\cdot\frac{3}{4}}=\sqrt{4+1-3}=\sqrt{2}$$ $$\bigtriangleup AMK=\bigtriangleup NLB$$ по двум сторонам и углу между ними $$\Rightarrow$$ $$MK=NL$$
4) $$P=MN+KL+MK+NL=5+3+2\sqrt{2}=8+2\sqrt{2}$$
Задание 14
Решите неравенство $$3^{2x^{2}}+3^{x^{2}+2x+5}\geq10\cdot3^{4x+6}$$
$$3^{2x^{2}}+3^{x^{2}+2x+5}\geq10\cdot3^{4x+6}$$ $$\div3^{4x+6}$$
$$3^{2x^{2}-4x-6}+3^{x^{2}-2x-1}\geq10$$
$$3^{2(x^{2}-2x-3)}+3^{x^{2}-2x-3}-10\geq0$$
Замена: $$3^{x^{2}-2x-3}=y>0$$
$$y^{2}+3^{2}\cdot y-10\geq0$$ $$\Rightarrow$$ $$(y+10)(y-1)\geq0$$
$$\left\{\begin{matrix}y_{1}+y_{2}=-9&\\y_{1}\cdot y_{2}=-10&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}y_{1}=-10&\\y_{2}=1&\end{matrix}\right.$$
Получим: $$\left\{\begin{matrix}y\geq1&\\y\leq-10&\end{matrix}\right.$$ $$\Rightarrow$$ $$\left\{\begin{matrix}3^{x^{2}2x-3}\geq3^{0}&\\3^{x^{2}-2x-3}\leq-10&\end{matrix}\right.$$ $$\Rightarrow$$ $$\left\{\begin{matrix}x^{2}-2x-3\geq0&\\\varnothing&\end{matrix}\right.$$ $$\Rightarrow$$ $$\left\{\begin{matrix}x\geq3&\\x\leq-1&\end{matrix}\right.$$
Задание 15
В четырехугольнике АВСD через каждую его вершину проведена прямая, проходящая через центр вписанной в него окружности. Три из этих прямых обладают тем свойством, что каждая из них делит площадь четырехугольника на две равновеликие части.
Задание 16
В июле 2019 года планируется взять кредит в банке на 6 лет в размере 880 000 рублей. Условия его возврата таковы:
Найдите S.
Задание 17
Найдите все значения параметра , при каждом из которых уравнение $$a^{2}\ctg^{2}x-9a+a^{2}=4a\sin x$$ имеет хотя бы один корень.
$$a^{2}\ctg^{2}x-9a+a^{2}=4a\sin x$$
$$a(a\cdot\ctg^{2}x-9+a-4\sin x)=0$$
1) При $$a=0$$ корни есть
2) При $$a\neq0$$: $$a(ctg^{2}x+1)-9-4\sin x=0$$
$$a(\frac{\cos^{2}x}{\sin^{2}x}+1)-9-4\sin x=0$$
$$a\cdot(\frac{1}{\sin^{2}x})-9-4\sin x=0$$
Пусть $$\sin x=y$$
$$\left\{\begin{matrix}\frac{a}{y^{2}}-9-4y=0&\\y\neq0&\\y\in[-1;1]&\end{matrix}\right.$$ $$\Leftrightarrow$$ $$\left\{\begin{matrix}\frac{a}{y^{2}}=4y+9&\\y\neq0&\\-1\leq y\leq1&\end{matrix}\right.$$
Пусть $$f(y)=\frac{a}{y^{2}}$$; $$g(y)=4y+9$$
При $$f(1)\leq g(1)$$ получим наличие корней. При этом $$a$$ должно быть меньше $$0$$, иначе ветви $$f(y)$$ вниз и $$f(y)<0$$ при всех $$y$$. Т.к. $$f(y)$$ симметричен от оси ординат, то $$f(1)\leq g(1)$$ достаточно $$\frac{a}{1}\leq4\cdot1+9$$ $$\Rightarrow$$ $$a\leq13$$ $$\Rightarrow$$ $$a\in(0;13]$$. С учетом (1) получим $$a\in[0;13]$$
Задание 18
Учащиеся 11 классов сдавали тесты по различным предметам. Каждый тест оценивается от 0 до 100 баллов. После получения результатов пятеро друзей решили сравнить полученные баллы. Каждый сдавал русский язык и профильную математику, четверо сдавали физику, трое сдавали информатику, и двое сдавали обществознание. Общая сумма баллов по физике не больше 300, а по информатике – не меньше 220. Сумма баллов по обществознанию оказалась равна сумме двух лучших результатов по физике и информатике.
(*) тест считается не сданным, если за него получено 0 баллов