238 вариант Алекса Ларина. Разбор ЕГЭ математика 2018.
Решаем ЕГЭ 238 вариант Ларина. Подробное решение 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 заданий тренировочного варианта ЕГЭ Ларина №238 (alexlarin.com)
Решаем ЕГЭ 238 вариант Ларина. Подробное решение 16,17,18,19 заданий тренировочного варианта ЕГЭ Ларина №238 (alexlarin.com)
Задание 1
Бассейн имеет форму прямоугольного параллелепипеда. Его длина, ширина и глубина равны соответственно 25 м, 12 м и 2 м. Для облицовки дна и стен бассейна решено приобрести плитку по цене 500 р. за квадратный метр. Сколько рублей будет стоить покупка, если по периметру бассейна дополнительно планируется выложить прямоугольную дорожку шириной 1 м из той же плитки?
Найдем площадь плитки, необходимой на бассейн. У бассейна две пары одинаковых стенок плюс одно дно: $$25*2*2+12*2*2+25*12$$. К нему прибавим площадь дорожки, для этого найдем площадь прямоугольника со сторонами "25+2" и "12+2" и вычтем из нее площадь дна бассейна: $$27*14-25*12$$. В итоге: $$25*2*2+12*2*2+25*12+27*14-25*12=526$$ Тогда стоимость покупки составит: $$526*500=263000$$
Задание 2
На графике показано изменение давления в паровой турбине после запуска. На оси абсцисс откладывается время в минутах, на оси ординат — давление в атмосферах. Определите по графику, сколько минут прошло от запуска турбины до момента, когда давление в первый раз достигло наибольшего значения.
Впервые максимальное значение (равное 5) достигается на 4 минуте
Задание 3
Для этого достроим прямоугольник размером 3 на 5, в который поместим треугольник ABC. Далее необходимо из площади прямоугольника вычесть площади "лишних" трех прямоугольных треугольников, чтобы осталась только площадь ABC: $$S=3*5-\frac{1}{2}(2*2+1*5+3*3)=6$$. Также следует учитывать, что размер клетки составляет 4*4, то есть площадь одной клетки $$4*4=16$$. Тогда итоговая площадь $$6*16=96$$
Задание 4
На прилавке лежат 8 одинаковых пар перчаток, но у одной пары есть незаметный снаружи брак внутри обеих перчаток. В ходе примерок все перчатки перемешались. Продавец разделил все перчатки случайным образом на 4 группы по 4 штуки. Какова вероятность того, что обе бракованные перчатки находятся в одной группе?
Пусть одна перчатка уже находится в какой-то группе, тогда свободных мест в ней (в группе) остается 3. В то же время перчаток остается 15. Следовательно, вероятность того, что вторая перчатка также попадет в эту группу: $$P=\frac{3}{15}=0,2$$
Задание 5
Найдите острый угол между биссектрисами острых углов прямоугольного треугольника. Ответ дайте в градусах.
Пусть один угол острый равен 2x, второй равен 2y, тогда по свойству углов прямоугольного треугольника: $$2x+2y=90 \Leftrightarrow$$$$x+y=45$$. То есть сумма острых углов получившегося тупоугольного треугольника составляет 45. Тогда и угол между этими биссектрисами (как внешний угол не смежный с данными острыми углами для тупоугольного треугольника) составляет 45
Задание 6
На рисунке изображён график $$y=f'(x)$$ — производной функции $$f(x)$$ , определённой на интервале (-4;10) . Найдите количество точек, в которых касательная к графику y=f(x) параллельна прямой y=x или совпадает с ней.
Раз касательная к графику параллельна графику функции y=x, то значения коэффициента при х у нее должно быть равно 1 (Графики линейных функций $$y=k_{1}x+b_{1} ; y=k_{2}x+b_{2}$$ параллельны при $$k_{1}=k_{2}$$. А это значение и есть значение производной. То есть необходимо найти количество точек, где значение производной равно 1 (чертим прямую y=1 и находим количество пересечений с графиком функции). Их будет 4
Задание 7
Высота правильной треугольной пирамиды втрое меньше стороны основания. Найдите угол между боковым ребром и плоскостью основания пирамиды. Ответ дайте в градусах.
Пусть $$DH=a$$, тогда $$AB=3a$$. Из треугольника равностороннего $$ABC$$: $$AM=\frac{\sqrt{3}}{2}AB=\frac{3\sqrt{3}a}{2}$$. Точка H - точка пересечения медиан треугольника ABC, тогда $$=AH=\frac{2}{3}AM=\sqrt{3}a$$. Из треугольника AHD: $$tg \angle DAH = \frac{DH}{AH}=\frac{1}{\sqrt{3}}$$, тогда сам угол составляет 30 градусов
Задание 8
Найдите значение выражения $$x+2^{3x+2}\cdot 8^{-x}$$ при x=6
Упростим данное выражение: $$x+2^{3x+2}\cdot 8^{-x}=x+2^{3x+2}\cdot 2^{-3x}=x+2^{2}$$ Подставим имеющиеся значения: $$6+2^{2}=10$$
Задание 9
После дождя уровень воды в колодце может повыситься. Мальчик определяет его, измеряя время падения t небольших камушков в колодец и рассчитывая по формуле $$h=5t^{2}$$ . До дождя время падения камушков составляло 1,4 с. На какую минимальную высоту должен подняться уровень воды после дождя, чтобы измеряемое время изменилось больше чем на 0,2 с?
Найдем значение высоты при времени 1,4 секунды и при времени, на 0,2 секунды меньше (то есть 1,2) $$h_{1}=5*1.4^{2}=9,8$$ $$h_{2}=5*1.2^{2}=7,2$$ Тогда изменение высоты составит: $$h_{1}-h_{2}=9,8-7,2=2,6$$
Задание 10
Из точки А круговой трассы одновременно начинают равномерное движение в противоположных направлениях два тела. К моменту их встречи первое тело проходит на 200 м больше, чем второе, и возвращается в точку А через 25 мин после встречи. Найдите длину трассы в метрах, если второе тело возвращается в точку А через 36 мин после встречи.
Пусть S км - расстояние от B до места встречи. Тогда S+0,2 км расстояние от A до места встречи. Пусть x км/ч - скорость тела из А, у км/ч - скорость тела из В. Время движения до встречи у них одинаковое, тогда : $$\frac{S+0,2}{x}=\frac{S}{x}$$. Время, за которое первое тело доедет до В 25 минут или $$\frac{5}{12}$$ часа: $$\frac{S}{x}=\frac{5}{12}$$. Аналогично время, за которое второе доедет до А после встречи 36 минут или $$\frac{3}{5}$$ часа: $$\frac{S+0,2}{y}=\frac{3}{5}$$.
Выразим во втором и третьем уравнении х и у через S: $$x=\frac{12S}{5} ; y=\frac{5(S+0,2)}{3}$$. Подставим полученные выражения в первое уравнение: $$\frac{5(S+0,2)}{12S}=\frac{3S}{5(S+0,2)} \Leftrightarrow$$$$25(S+0,2)^{2}=36S^{2} \Leftrightarrow$$$$11S^{2}-10S-1=0$$.
Решим данное уравнение и получим, что $$S_{1}=1 ; S_{2} < 0 $$. В таком случае полное расстояние в км составит $$1+0,2+1=2,2$$, что в метрах равно 2200
Задание 11
Найдите наименьшее значение функции $$y=\frac{x^{2}-8x+64}{x}$$ на отрезке [4;18].
Найдем производную данной функции и приравняем ее к нулю: $$y'=\frac{(x^{2}-8x+64)'x-x'(x^{2}-8x+64)}{x^{2}}=0$$ $$y'=\frac{2x^{2}-8x-x^{2}+8x-64}{x^{2}}=0$$ $$\frac{x^{2}-64}{x^{2}}=0$$ $$x_{1}=-8 ; x_{2}=8$$ Отметим полученные значения на координатной прямой и расставим знаки производной, получим, что $$x_{2}$$ является точкой минимума. Тогда наименьшее значение функции на заданном отрезке будет именно в этой точке: $$y(8)=\frac{8^{2}-8*8+64}{8}=8$$
Задание 12
а) Решите уравнение $$\sin 2x=\sin x -2\cos x +1$$
б) Найдите все корни этого уравнения, принадлежащие промежутку $$[ \frac{3\pi}{2} ; 3\pi ]$$
$$\sin 2x=\sin x -2\cos x +1 \Leftrightarrow$$$$2\sin x \cos x-\sin x +2\cos x -1=0 \Leftrightarrow$$$$2\cos x(\sin x+1)-1(\sin x +1)=0 \Leftrightarrow$$$$(\sin x+1)(2\cos x - 1 )=0 \Leftrightarrow$$$$ \left\{\begin{matrix} \sin x = -1\\ \cos x = \frac{1}{2}\end{matrix}\right.\Leftrightarrow $$$$ \left\{\begin{matrix}x=-\frac{\pi}{2}+2\pi n\\x=\pm \frac{\pi}{3}+2\pi k \end{matrix}\right.(n,k\in Z)$$
Отметим полученные корни на единичной окружности, выделим необходимый промежуток и найдем частные случаи полученных корней:
Получим: $$\frac{3\pi}{2} ; \frac{5\pi}{3} ; \frac{7\pi}{3}$$
Задание 13
В треугольной пирамиде ABCD длины всех рёбер равны. Точка Р равноудалена от вершин А и D, причём известно, что PB = PC и прямая РВ перпендикулярна высоте треугольника АСD, опущенной из вершины D.
а) 1)PA=PD, тогда NP - серединный перпендикуляр для AD
2)PB = PC, тогда MP - серединный перпендикуляр для CB.
3)AM перпендикулярно CB, тогда NM также перпендикулярно CB и значит $$P \in NM ; P \in AMD$$
4)$$PB \cap DK = L$$. $$BK \perp AC \Leftrightarrow BL \perp AC$$, но по условию $$BL \perp DL$$, значит $$BL \perp (ADC)$$, то есть BL - высота пирамиды и $$P \in DKB$$. Следовательно, точка P лежит в двух плоскостях, значит принадлежит линии пересечения. $$(AMD) \cap (DKB) = PO$$, где PO - высота пирамиды, следовательно P лежит на пересечении высот
б)1) Пусть длина ребра х, тогда из треугольника ADC: $$DK=KB=\frac{\sqrt{3}x}{2}$$, $$DL=\frac{2}{3}DK=\frac{x\sqrt{3}}{3}$$ (по свойству медиан)
2)$$\sin LBD = \frac{DL}{DB}=\frac{\sqrt{3}}{3}$$, тогда $$\cos LBD = \frac{\sqrt{6}}{3}$$ ( по основному тригонометрическому тождеству )
3)из треугольника PQB: $$QB=PB \cos LBD $$, $$QB=\frac{1}{2}x$$ (свойство медианы). Тогда $$\frac{1}{2}x=\frac{\sqrt{3}}{2}*\frac{\sqrt{6}}{3}=1$$, тогда ребро равно 2
4)Из треугольника ABC :$$BK=\frac{\sqrt{3}}{2}*2=\sqrt{3}$$, $$OB = \frac{2}{3}BK = \frac{2\sqrt{3}}{3}$$
5)$$DO=\sqrt{DB^{2}-OB^{2}}=\sqrt{\frac{8}{3}}$$, тогда $$S_{ABC}=\frac{1}{2}*2*2*\frac{\sqrt{3}}{2}=\sqrt{3}$$, и объем пирамиды $$V=\frac{1}{3}S_{ABC}*DO=\frac{1}{3}*\sqrt{3}*\frac{\sqrt{8}}{\sqrt{3}}=\frac{\sqrt{8}}{3}$$
Задание 14
Решите неравенство $$(\log_{x} 2 -1)\log_{2} 2x \leq \frac{3}{2}$$
ОДЗ: $$\left\{\begin{matrix}x> 0\\ x\neq 1\end{matrix}\right.\Leftrightarrow$$$$ x \in (0;1)\cup (1;+\infty )$$
Выполним преобразования, используя формулы: $$\log_{a} b = \frac{1}{\log_{b} a} ; log_{c} ab = \log_{c}a + \log_{c} b$$ $$(\frac{1}{\log_{2}x}-1)(\log_{2}2+\log_{2}x)\leq \frac{3}{2}$$
Введем замену $$\log_{2}x=y$$
$$(\frac{1}{y}-1)(1+y)\leq \frac{3}{2}\Leftrightarrow$$$$ \frac{2(1-y)(y+1)-3y}{2y}\leq 0\Leftrightarrow $$$$\frac{-2y^{2}-3y+2}{2y}\leq 0 |\cdot (-1) \Leftrightarrow$$$$ \frac{2y^{2}+3y-2}{y}\geq 0\Leftrightarrow $$$$\frac{2(y-0,5)(y+2)}{y}\geq 0\left[\begin{matrix}\left\{\begin{matrix}y\geq -2\\ y< 0\end{matrix}\right.\\ y\geq 0,5\end{matrix}\right.$$
Найдем промежутки, на которых будут положительные значения:
Выполним обратную замену:
$$\left[\begin{matrix}\left\{\begin{matrix}\log_{2}x\geq -2\\ \log_{2}x< 0\end{matrix}\right.\\ \log_{2}x\geq 0,5\end{matrix}\right.\Leftrightarrow $$$$\left[\begin{matrix}\left\{\begin{matrix}x\geq \frac{1}{4}\\x< 1\end{matrix}\right.\\x\geq \sqrt{2}\end{matrix}\right.\Leftrightarrow $$
С учетом ОДЗ получим: $$x \in \left [\frac{1}{4};1 \right )\cup \left [ \sqrt{2};+\infty \right )$$
Задание 15
В трапецию ABCD c основаниями ВС и AD вписана окружность с центром О, СН – высота трапеции, Е – точка пересечения диагоналей.
а) 1)Пусть $$\angle ADC = \alpha$$, тогда $$\angle DCB = 180 - \alpha$$ (по свойству трапеции). Центр вписанной окружности лежит на пересечении биссектрис, тогда OC - биссектриса, следовательно, $$\angle OCD = 0,5 \angle DCB = 90-\frac{1}{2}\alpha$$
2) $$\angle DCH = 90 - \alpha$$ (из прямоугольного треугольника CHD). Тогда $$\angle OCH = \angle OCD - \angle DCH = \frac{\alpha}{2}$$
3)Проведем перпендикуляр OM на отрезок CH. O - центр окружности, следовательно M - центр CH, тогда треугольники OMC и OMH равны по двум катетам, тогда $$\angle OHC= \frac{\alpha}{2} = \frac{1}{2}ADC$$
б)1) BC + AD = AB + CD = 27 ( по свойству вписанного четырехугольника ). CH = AB ; пусть AB = x, то CH = x , и CD = 27 - x ; AH = BC, тогда HD = 18 - 9 = 9. По теореме Пифагора из прямоугольного треугольника CHD: $$(27-x)^{2}=x^{2}+9^{2} \Leftrightarrow$$$$x=12$$. Значит AB=12 и радиус окружности составляет 6.
2)Пусть через E проходит перпендикуляр NQ. Докажем, что он пройдет и через O. Треугольники BCE и AED подобны, тогда $$\frac{NE}{EQ}=\frac{BC}{AD}$$. Но и треугольники BNE и EQD подобны, тогда $$\frac{NE}{EQ}=\frac{BN}{QD}$$. Тогда $$\frac{BC}{AD}=\frac{BN}{QD}$$. Пусть BN=y, тогда QD=18-y. Получаем $$\frac{9}{18}=\frac{y}{18-y}$$. Тогда y=6=BN. Но радиус так же равен 6, тогда E и O лежат на одной прямой, параллельной CH.
3)Из пункта два (подобие треугольников) $$\frac{NE}{EQ}=\frac{BC}{AD}$$, пусть NE=z, тогда EQ=12-z. $$\frac{z}{12-z}=\frac{9}{18}$$. Тогда z=4=NE, следовательно, EQ=8. Тогда $$EO=EQ-QO=8-6=2$$. $$QH=AH-AQ=9-6=3$$.
4)$$S_{CEOH}=\frac{EO+CH}{2}*QH=\frac{2+12}{2}*3=21$$
Задание 16
В июле планируется взять кредит банке на сумму 20 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы:
На сколько лет был взят кредит, если известно, что общая сумма выплат после его погашения равнялась 47 млн рублей?
Пусть S-начальный кредит (S=20 млн), r - процент по кредиту (r=30%), n - количество лет. С учетом того, что сумма долга уменьшается равномерно, то ежегодный платеж будет складываться из платежа по основному долгу и начисленных процентов. Так как берется сумма S на n лет, то ежегодный платеж по основному долгу составит $$\frac{S}{n}$$. Составим таблицу платежей:
Номер года | Долг на начало года | Начисленный процентный долг | Итоговый платеж |
1 | S | $$\frac{r}{100}*S$$ | $$\frac{r}{100}*S+\frac{S}{n}$$ |
2 | $$\frac{n-1}{n}S$$ | $$\frac{r}{100}*\frac{n-1}{n}S$$ | $$\frac{r}{100}*\frac{n-1}{n}S+\frac{S}{n}$$ |
3 | $$\frac{n-2}{n}S$$ | $$\frac{r}{100}*\frac{n-2}{n}S$$ | $$\frac{r}{100}*\frac{n-2}{n}S+\frac{S}{n}$$ |
... | ... | ... | ... |
n | $$\frac{1}{n}S$$ | $$\frac{r}{100}*\frac{1}{n}S$$ | $$\frac{r}{100}*\frac{1}{n}S+\frac{S}{n}$$ |
Тогда итоговая сумма выплат составит: $$\frac{S}{n}*n+\frac{r}{100}*S(1+\frac{n-1}{n}+\frac{n-2}{n}+...\frac{1}{n})=47$$
При этом $$(1+\frac{n-1}{n}+\frac{n-2}{n}+...\frac{1}{n})=\frac{n+1}{2}$$ (вы можете вывести эту формулу самостоятельно рассмотрев сумму чисел при n=4 и n=5, посчитав полученный суммы вы заметите данную зависимость)
Подставим имеющиеся данные в полученное уравнение:$$20+\frac{30}{100}*20*\frac{n+1}{2}=47 \Leftrightarrow$$$$6*\frac{n+1}{2}=47-20 \Leftrightarrow$$$$n+1=9\Leftrightarrow n=8$$
Задание 17
Найдите все значения параметра $$3a(a-7)-8(a-7)(2^{x}+1)\leq (8x^{2}-16x)(2^{x}+1)-3ax^{2}+6ax$$ , при каждом из которых неравенство имеет решения на промежутке $$[-1;0)$$
Преобразуем данное неравенство: $$(a-7)(3a-8(2^{x}+1))\leq 8x(x-2)(2^{x}+1)-3ax(x-2) \Leftrightarrow$$$$(a-7)(3a-8(2^{x}+1))\leq x(x-2)(8(2^{x}+1)-3a) \Leftrightarrow$$$$(a-7)(3a-8(2^{x}+1)) + x(x-2)(3a-(2^{x}+1))\leq 0 \Leftrightarrow$$$$(8(2^{x}+1)-3a)(x^{2}-2x+a-7) \geq 0 (1)$$
Рассмотрим по отдельности обе скобки и представим их как функции $$a(x)$$:
$$8(2^{x}+1)-3a = 0\Leftrightarrow$$$$a=\frac{2^{x+3}}{3}+\frac{8}{3}$$ - график степенной функции
$$x^{2}-2x+a-7=0 \Leftrightarrow$$$$a=-x^{2}+2x+7\Leftrightarrow$$$$a=-(x^{2}-2x-7)\Leftrightarrow$$$$a=-(x^{2}-2x+1-1-7)\Leftrightarrow$$$$a=-(x-1)^{2}+8$$ - график квадратичной функции.
По условии задачи необходимо, чтобы решения были на промежутке $$[-1;0)$$, тогда так же построим графики $$x=-1 ; x=0$$ и графики полученных функции в системе координат AoX.
Найдем пересечение степенной функции с прямыми $$x=-1 ; x=0$$:
$$x=-1 ; a(-1)=\frac{2^{-1+3}}{3}+\frac{8}{3}=4$$
$$x=0 ; a(0)=\frac{2^{0+3}}{3}+\frac{8}{3}=\frac{16}{3}$$
Как видим по графикам мы получили три области, необходимо проверить, точки каких областей удовлетворяют неравенству (1). Для этого будем брать из каждой области точку, и подставлять координаты в наше неравенство:
1) Возьмем точку (0;0) : $$(8(2^{0}+1)-3*0)(0^{2}-2*0+0-7) \geq 0 \Leftrightarrow$$$$16*(-7)\geq 0$$ - неравенство неверно, следовательно, первая область не подходит
2) Возьмем точку (0;6): $$(8(2^{0}+1)-3*6)(0^{2}-2*0+6-7) \geq 0 \Leftrightarrow$$$$-2*(-1)\geq 0$$ - неравенство верно, следовательно, вторая область подходит и по а она находится в промежутке [4;7) (7 не входит, так как по условию $$x \neq 0$$)
3) Возьмем точку (0;8) : $$(8(2^{0}+1)-3*8)(0^{2}-2*0+8-7) \geq 0 \Leftrightarrow$$$$-8*1 \geq 0$$ - неравенство неверно, следовательно, третья область не подходит
Итоговый ответ: $$a \in \left [ 4 ; 7 \right )$$
Задание 18
Для членов последовательности целых чисел $$a_{1},a_{2},...,a_{6}$$ при всех натуральных $$k \leq 4$$ имеет место неравенство $$a_{k+2} < 3a_{k+1} -2a_{k}$$
А) 0 ; 2 ; 4 ; 6 ; 8 ; 10. Необходимо просто проверить выполнение условия неравенства $$a_{k+2} < 3a_{k+1} -2a_{k}$$ Б) Распишем неравенство всех членов, начиная с третьего: $$a_{3} < 3a_{2}-2a_{1}$$. Так как по условию $$a_{3}=a_{1}$$, то получаем: $$a_{1} < 3a_{2}-2a_{1} \Leftrightarrow$$$$a_{1} < a_{2}$$. Так как все числа последовательности - целые, то первый и второй член будут различаться на какое-то натуральное число (пусть оно равно x) : $$a_{2}=a_{1}+x (1)$$ $$a_{4} < 3a_{3}-2a_{2}$$. Но $$a_{3}=a_{1}$$, следовательно, подставляя равенство (1) получим: $$a_{4} < 3a_{1}-2a_{1}-2x \Leftrightarrow$$$$a_{4} < a_{1} - 2x$$. Так как неравенство строгое, то можно записать: $$a_{4} = a_{1} - 2x - y$$, где y - натуральное число. Аналогично распишем два оставшихся неравенства: $$a_{5} < 3a_{4}-2a_{3} \Leftrightarrow$$$$a_{5} < 3a_{1}-6x-3y -2a_{1} \Leftrightarrow$$$$ a_{5}< a_{1} - 6x - 3y$$. Тогда $$a_{5} = a_{1} - 6x-3y - z$$, где z - число натуральное. $$a_{6} < 3a_{5}-2a_{4} \Leftrightarrow$$$$a_{6} < 3a_{1}-18x-9y - 3z -2a_{1}+4x+2y \Leftrightarrow$$$$ a_{6} < a_{1} - 14x - 7y - 3z$$. Но $$a_{6}=a_{1}$$, тогда $$a_{1} < a_{1} - 14x - 7y - 3z \Leftrightarrow$$$$ 0 < a_{1} - 14x - 7y - 3z $$. Что невозможно, так как правая часть это три натуральных числа, взятых с минусом, то есть число отрицательное. Значит ответ на пункт Б) нет В) Рассуждение будет аналогично пункту Б). Единственное, что необходимо учитывать, что данная прогрессия будет возрастающая, и чем меньше различия между, тем меньше будет каждый из них ( то есть мы будем брать не числа x;y;z, а минимально возможное натуральное, то есть 1): $$a_{1}=0$$, тогда $$a_{3} < 3a_{2}$$ , следовательно, $$a_{3}=3a_{2}-1$$ $$a_{4} < 3a_{3}-2a_{2} \Leftrightarrow$$$$a_{4} < 9a_{2}-3-2a_{2} \Leftrightarrow$$$$ a_{4} < 7a_{2}-3$$. Тогда $$a_{4}=7a_{2}-4$$ $$a_{5} < 3a_{4}-2a_{3} \Leftrightarrow$$$$a_{5} < 21a_{2}-12-6a_{2}+2 \Leftrightarrow$$$$ a_{5} < 15a_{2}-10$$. Тогда $$a_{5}=15a_{2}-11$$ $$a_{6} < 3a_{5}-2a_{4} \Leftrightarrow$$$$a_{6} < 45a_{2}-33-14a_{2}+8 \Leftrightarrow$$$$ a_{6} < 31a_{2}-25$$. Тогда $$a_{6}=31a_{2}-26=1000$$. Тогда $$1000 < 31a_{2}-25 \Leftrightarrow$$$$ 33,064 < a_{2}$$. С учетом того, что все члены последовательности целые, получаем, что $$a_{2}=34$$