Перейти к основному содержанию

ОГЭ

ОГЭ / Площади фигур

 
Аналоги к этому заданию:

Задание 11662

В ромбе ABCD угол АВС равен 68°. Найдите угол ACD. Ответ дайте в градусах.

Ответ:
 
Аналоги к этому заданию:

Задание 11641

Площадь параллелограмма ABCD равна 66. Точка E – середина стороны AB. Найдите площадь трапеции EBCD

Ответ:
 
Аналоги к этому заданию:

Задание 11621

Площадь ромба равна 54, а периметр равен 36. Найдите высоту ромба.

Ответ:
 
Аналоги к этому заданию:

Задание 11598

Основания трапеции равны 1 и 7. Одна из боковых сторон равна $$23\sqrt{3}$$, а угол между ней и одним из оснований равен 120o. Найдите площадь трапеции.

Ответ:
 
Аналоги к этому заданию:

Задание 11576

Сторона ромба равна 14, а один из углов этого ромба равен 150°. Найдите высоту этого ромба.

Ответ:
 
Аналоги к этому заданию:

Задание 11554

Сторона ромба равна 6, а один из углов этого ромба равен 150°. Найдите площадь этого ромба.

Ответ:
 
Аналоги к этому заданию:

Задание 11533

В трапеции ABCD известно, что AD=7, BC=3, а её площадь равна 85. Найдите площадь трапеции BCNM , где MN – средняя линия трапеции ABCD .

Ответ: 34
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 11510

Площадь параллелограмма ABCD равна 108. Точка E – середина стороны CD. Найдите площадь трапеции ABED .

Ответ: 81
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 11438

В трапеции ABCD AB=CD, $$\angle BDA=22^{\circ}$$ и $$\angle BDC=45^{\circ}$$. Найдите угол ABD. Ответ дайте в градусах.

Ответ:
 
Аналоги к этому заданию:

Задание 11395

Периметр ромба равен 56, а один из углов равен 30° Найдите площадь ромба.

Ответ:
 
Аналоги к этому заданию:

Задание 11352

Периметр ромба равен 12, а один из углов равен 30o.Найдите площадь ромба.

Ответ:
 
Аналоги к этому заданию:

Задание 11316

Две стороны параллелограмма равны 10 и 12, а один из углов этого параллелограмма равен 30°. Найдите площадь этого параллелограмма.

Ответ:
 
Аналоги к этому заданию:

Задание 11295

Диагонали параллелограмма равны 12 и 17, а угол между ними равен 30o. Найдите площадь этого параллелограмма.

Ответ:
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 11253

Основания трапеции равны 20 и 26, одна из боковых сторон равна $$8\sqrt{3}$$, а угол между ней и одним из оснований равен 120o. Найдите площадь трапеции.

Ответ: 276
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 11230

Диагонали параллелограмма равны 10 и 26, а угол между ними равен 30°. Найдите площадь этого параллелограмма.

Ответ: 65
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 11209

Найдите площадь параллелограмма, изображённого на рисунке

Ответ: 44
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 11187

Найдите площадь параллелограмма, изображённого на рисунке.

Ответ: 96
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

 
Аналоги к этому заданию:

Задание 11165

Диагонали параллелограмма равны 7 и 24, а угол между ними равен 30°. Найдите площадь этого параллелограмма.
Ответ: 42
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть Площадь параллелограмма можно найти как половину произведения длин его диагоналей на синус угла между ними: $$S-\frac{1}{2}\cdot 7\cdot 24\cdot \frac{1}{2}=42$$
 
Аналоги к этому заданию:

Задание 10975

Сторона треугольника равна 29, а высота, проведённая к этой стороне, равна 12. Найдите площадь этого треугольника.

Ответ: 174
Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Скрыть $$S=\frac{1}{2}ah=\frac{1}{2}\cdot 29\cdot 12=174$$
Аналоги к этому заданию:

Задание 10460

Найдите площадь параллелограмма, изображённого на рисунке.

Ответ: 28
Скрыть

Сторона (a), к которой проведена высота равна $$3+4=7$$.

Площадь параллелограмма равна $$S=ah=7\cdot 4=28$$

 
Аналоги к этому заданию:

Задание 10419

Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны 30 и 50.

Ответ: 600
 
Аналоги к этому заданию:

Задание 8849

Две стороны параллелограмма равны 10 и 12, а один из углов этого параллелограмма равен 30°. Найдите площадь этого параллелограмма.

Ответ: 60
Скрыть Площадь параллелограмма можно найти как половину произведения смежных сторон на синус угла между ними. Учтем, что синус угла в 30 градусов равен $$\frac{1}{2}$$: $$S=\frac{1}{2}10\cdot 12\cdot \frac{1}{2}=60$$
 
Аналоги к этому заданию:

Задание 8822

Диагонали параллелограмма равны 12 и 17, а угол между ними равен 30°. Найдите площадь этого параллелограмма.

Ответ: 51
Скрыть Площадь параллелограмма можно вычислить как половину произведения диагоналей на синус угла между ними (синус угла в 30 градусов равен $$\frac{1}{2}$$): $$S=\frac{1}{2}\cdot 12\cdot 17 \cdot \frac{1}{2}=51$$
Аналоги к этому заданию:

Задание 1996

Диа­го­наль AC па­рал­ле­ло­грам­ма ABCD об­ра­зу­ет с его сто­ро­на­ми углы, рав­ные 30° и 45° . Най­ди­те боль­ший угол па­рал­ле­ло­грам­ма. Ответ дайте в гра­ду­сах.

Ответ: 105
Скрыть

  1. Пусть $$\angle BAC=30^{\circ} ; \angle CAD=45^{\circ}$$, тогда $$\angle A=30+45=75^{\circ}$$
  2. По свойству углов параллелограмма: $$\angle B=180-75=105^{\circ}$$ - это и есть больший угол
Аналоги к этому заданию:

Задание 1995

Вы­со­та BH ромба ABCD делит его сто­ро­ну AD на от­рез­ки AH = 5 и HD = 8. Най­ди­те пло­щадь ромба.

Ответ: 156
Скрыть

  1. $$AD=AH+HD=5+8=13$$, тогда по свойству ромба $$AB=13$$
  2. Из прямоугольного треугольника ABH: $$BH=\sqrt{13^{2}-5^{2}}=12$$
  3. Из формулы площади ромба $$S=12*13=156$$
Аналоги к этому заданию:

Задание 1994

Вы­со­та BH па­рал­ле­ло­грам­ма ABCD делит его сто­ро­ну AD на от­рез­ки AH = 1 и HD = 28. Диа­го­наль па­рал­ле­ло­грам­ма BD равна 53. Най­ди­те пло­щадь па­рал­ле­ло­грам­ма.

Ответ: 1305
Скрыть

  1. Из прямоугольного треуголььника BDH : $$BH=\sqrt{53^{2}-28^{2}}=45$$
  2. $$AD=AH+AD=29$$, тогда площадь параллелограмма $$S=45*29=1305$$
Аналоги к этому заданию:

Задание 1993

Сто­ро­на ромба равна 50, а диа­го­наль равна 80. Най­ди­те пло­щадь ромба.

Ответ: 2400
Скрыть

  1. Пусть BD=80, тогда по свойству диагоналей ромба: $$ED=\frac{1}{2}BD=40$$
  2. Из прямоугольного треугольника EAD: $$EA=\sqrt{50^{2}-40^{2}}=30$$, тогда AC=60
  3. Из формулы площади ромба: $$S=\frac{1}{2}*80*60=2400$$
Аналоги к этому заданию:

Задание 1992

Сто­ро­на ромба равна 9, а рас­сто­я­ние от цен­тра ромба до неё равно 1. Най­ди­те пло­щадь ромба.

Ответ: 18
Скрыть

  1. Из треугольника AED: $$S_{AED}=\frac{1}{2}*1*9=4,5$$
  2. Ромб состоит из четырех равных прямоугольных треугольников, образованных диагоналями ромба, тогда $$S_{ABCD}=4S_{AED}=18$$
Аналоги к этому заданию:

Задание 1991

Най­ди­те пло­щадь ромба, если его диа­го­на­ли равны 14 и 6.

Ответ: 42
Скрыть

Из формулы площади ромба: $$S=\frac{1}{2}*14*6=42$$

Аналоги к этому заданию:

Задание 1990

Пло­щадь па­рал­ле­ло­грам­ма ABCD равна 56. Точка E — се­ре­ди­на сто­ро­ны CD. Най­ди­те пло­щадь тра­пе­ции AECB.

Ответ: 42
Скрыть

  1. Найдем площадь треугольника AED: $$S_{AED}=\frac{1}{2}ED*h=\frac{1}{4}CD*h=\frac{1}{4}S_{ABCD}$$, где h - высота параллелограмма
  2. Тогда $$S_{AECB}=\frac{3}{4}S_{ABCD}=42$$
Аналоги к этому заданию:

Задание 1989

В ромбе сто­ро­на равна 10, одна из диа­го­на­лей — $$5(\sqrt{6}-\sqrt{2})$$, а угол, ле­жа­щий на­про­тив этой диа­го­на­ли, равен 30°. Най­ди­те пло­щадь ромба.

Ответ: 50
Скрыть

Пусть угол D равен 30 градусам, тогда из формулы площади ромба: $$S=10*10*\sin D=50$$

Аналоги к этому заданию:

Задание 1988

Одна из сто­рон па­рал­ле­ло­грам­ма равна 12, дру­гая равна 5, а один из углов — 45°. Най­ди­те пло­щадь па­рал­ле­ло­грам­ма, делённую на $$\sqrt{2}$$.

Ответ: 30
Скрыть

Из формулы площади параллелограмма: $$S=12*5*\sin 45=30\sqrt{2}$$. В ответе необходимо найти указать ответ, деленный на $$\sqrt{2}$$, то есть 30

Аналоги к этому заданию:

Задание 1987

Одна из сто­рон па­рал­ле­ло­грам­ма равна 12, а опу­щен­ная на нее вы­со­та равна 10. Най­ди­те пло­щадь па­рал­ле­ло­грам­ма.

Ответ: 120
Скрыть

Из формулы площади параллелограмма: $$S=12*10=120$$

Аналоги к этому заданию:

Задание 1986

Пе­ри­метр ромба равен 24, а синус од­но­го из углов равен $$\frac{1}{3}$$. Най­ди­те пло­щадь ромба.

Ответ: 12
Скрыть
  1. Пусть a - сторона ромба, тогда $$a=\frac{24}{4}=6$$
  2. Найдем площадь ромба: $$S=6*6*\frac{1}{3}=12$$
Аналоги к этому заданию:

Задание 1985

Пе­ри­метр ромба равен 40, а один из углов равен 30°. Най­ди­те пло­щадь ромба.

Ответ: 50
Скрыть
  1. Пусть a - сторона ромба, тогда $$a=\frac{40}{4}=10$$
  2. Найдем площадь ромба: $$S=10*10*\sin 30^{\circ}=50$$
Аналоги к этому заданию:

Задание 1982

Сто­ро­на тре­уголь­ни­ка равна 12, а вы­со­та, про­ведённая к этой сто­ро­не, равна 33. Най­ди­те пло­щадь этого тре­уголь­ни­ка.

Ответ: 198
Скрыть

Из формулы площади треугольника $$S=\frac{1}{2}*12*33=198$$

Аналоги к этому заданию:

Задание 1981

В тре­уголь­ни­ке ABC от­ре­зок DE — сред­няя линия. Пло­щадь тре­уголь­ни­ка CDE равна 45. Най­ди­те пло­щадь тре­уголь­ни­ка ABC.

Ответ: 180
Скрыть

  1. Так как DE - средняя линия, то $$DE=\frac{1}{2}AC$$, но тогда $$S_{CDE}=\frac{1}{2}S_{ADC}$$ (у них одинаковая высота, но различные в два раза основания). То есть $$S_{ADC}=2*45=90$$, тогда $$S_{ADEC}=135$$
  2. Треугольники ABC и DBE подобны (по свойству средней линии), при это $$k=\frac{1}{2}$$ - коэффициент подобия, тогда $$\frac{S_{BDE}}{S_{ABC}}=k^{2}=\frac{1}{4}$$, тогда $$S_{BDE}=\frac{1}{4}S_{ABC}$$, следовательно, $$S_{ADEC}=\frac{3}{4}S_{ABC}$$. Получаем, что $$S_{ABC}=\frac{4}{3}S_{ADEC}=180$$
Аналоги к этому заданию:

Задание 1976

В тре­уголь­ни­ке одна из сто­рон равна 10, дру­гая равна $$10\sqrt{3}$$, а угол между ними равен 60°. Най­ди­те пло­щадь тре­уголь­ни­ка.

Ответ: 75
Скрыть

По формуле площади треугольника $$S=\frac{1}{2}10*10\sqrt{3}*\sin 60^{\circ}=75$$

Аналоги к этому заданию:

Задание 1975

В тре­уголь­ни­ке одна из сто­рон равна 10, а опу­щен­ная на нее вы­со­та — 5. Най­ди­те пло­щадь тре­уголь­ни­ка.

Ответ: 25
Скрыть

По формуле площади треугольника $$S=\frac{1}{2}*10*5=25$$

Аналоги к этому заданию:

Задание 1974

В тра­пе­ции ABCD AD = 3, BC = 1, а её пло­щадь равна 12. Най­ди­те пло­щадь тре­уголь­ни­ка ABC.

Ответ: 3
Скрыть

  1. Из площади трапеции $$AE=\frac{2S_{ABCD}}{BC+AD}=\frac{2*12}{3+1}=6$$
  2. Из формулы площади треугольника: $$S_{ABC}=\frac{1}{2}BC*AE=\frac{1}{2}*6*1=3$$
Аналоги к этому заданию:

Задание 1973

В тра­пе­ции ABCD AD = 5, BC = 2, а её пло­щадь равна 28. Най­ди­те пло­щадь тра­пе­ции BCNM, где MN – сред­няя линия тра­пе­ции ABCD.

Ответ: 11
Скрыть

  1. Из формулы площади трапеции $$BE=\frac{2S_{ABCD}}{AD+BC}=\frac{2*28}{5+2}=8$$
  2. $$BF=FE=\frac{1}{2}BE=4$$ так как MN - средняя линия трапеции, $$MN=\frac{BC+AD}{2}=\frac{2+5}{2}=3,5$$
  3. Площадь трапеции BCNM: $$S=\frac{BC+MN}{2}*BF=\frac{2+3,5}{2}*4=11$$
Аналоги к этому заданию:

Задание 1972

Ос­но­ва­ния тра­пе­ции равны 1 и 13, одна из бо­ко­вых сто­рон равна $$15\sqrt{2}$$, а угол между ней и одним из ос­но­ва­ний равен 135°. Най­ди­те пло­щадь тра­пе­ции.

Ответ: 105
Скрыть

  1. Пусть $$\angle C=135^{\circ}, CD=15\sqrt{2}$$. Опустим высоту CE , тогда $$\angle ECD=135-90=45^{\circ}$$, следовательно, треугольник CDE - прямоугольный и равнобедренный
  2. Из треугольника CDE -$$CE=CD*\sin ECD=15\sqrt{2}*\frac{\sqrt{2}}{2}=15$$
  3. Площадь трапеции $$S_{ABCD}=\frac{1+13}{2}*15=105$$
Аналоги к этому заданию:

Задание 1971

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 5 и 17, а ее бо­ко­вые сто­ро­ны равны 10. Най­ди­те пло­щадь тра­пе­ции.

Ответ: 88
Скрыть

  1. Опустим высоты BF и CE, тогда треугольники ABF и CED равны по гипотенузе и катету, следовательно,  FE=BC=5, $$AF=ED=\frac{AD-BC}{2}=6$$
  2. Из прямоугольного треугольника ABF по теореме Пифагора $$BF=\sqrt{10^{2}-6^{2}}=8$$
  3. Площадь трапеции ABCD: $$S=\frac{5+17}{2}*8=88$$
Аналоги к этому заданию:

Задание 1970

Най­ди­те пло­щадь тра­пе­ции, изоб­ражённой на ри­сун­ке.

Ответ: 168
Скрыть
  1. $$AD=AE+ED=21$$
  2. Площадь трапеции ABCD: $$S=\frac{7+21}{2}*12=168$$
Аналоги к этому заданию:

Задание 1969

В рав­но­бед­рен­ной тра­пе­ции ос­но­ва­ния равны 3 и 9, а один из углов между бо­ко­вой сто­ро­ной и ос­но­ва­ни­ем равен 45°. Най­ди­те пло­щадь тра­пе­ции.

Ответ: 18
Скрыть

  1. Опустим высоты CE и BF. Тогда FE=BC=3, $$AF=ED=\frac{AD-FE}{2}=3$$ (из равенства прямоугольных треугольников ABF и CED)
  2. Пусть $$\angle D=45^{\circ}$$, тогда треугольник CED - равнобедренный ($$\angle ECD=90-45=45=\angle D$$), тогда CE=ED=3
  3. Из формулы площади трапеции: $$S_{ABCD}=\frac{3+9}{2}*3=18$$
Аналоги к этому заданию:

Задание 1968

Бо­ко­вая сто­ро­на тра­пе­ции равна 5, а один из при­ле­га­ю­щих к ней углов равен 30°. Най­ди­те пло­щадь тра­пе­ции, если её ос­но­ва­ния равны 3 и 9.

Ответ: 15
Скрыть

  1. Пусть $$\angle D=30^{\circ}$$. Опустим высоту CE, тогда из прямоугольного треугольника CED: $$CE=CD*\sin D=2,5$$
  2. По формуле площади трапеции $$S_{ABCD}=\frac{3+9}{2}*2,5=15$$
Аналоги к этому заданию:

Задание 1967

Сред­няя линия тра­пе­ции равна 11, а мень­ше ос­но­ва­ние равно 5. Най­ди­те боль­шее ос­но­ва­ние тра­пе­ции.

Ответ: 17
Скрыть

Пусть a - большее основание, тогда из формулы длины средней линии трапеции : $$a=2*11-5=17$$

Аналоги к этому заданию:

Задание 1966

Ос­но­ва­ния тра­пе­ции равны 18 и 12, одна из бо­ко­вых сто­рон равна 6, а ко­си­нус угла между ней и одним из ос­но­ва­ний равен $$\frac{2\sqrt{2}}{3}$$. Най­ди­те пло­щадь тра­пе­ции.

Ответ: 30
Скрыть

  1. Пусть $$\cos D =\frac{2\sqrt{2}}{3}$$, опустим высоту CE. Тогда из треугольника  CED: $$ED=CD*\cos D=6*\frac{2\sqrt{2}}{3}=4\sqrt{2}$$
  2. По теореме Пифагора из треугольника CED: $$CE=\sqrt{6^{2}-(4\sqrt{2})^{2}}=2$$
  3. Из формулы площади трапеции $$S_{ABCD}=\frac{18+12}{2}*2=30$$
Аналоги к этому заданию:

Задание 1965

Ос­но­ва­ния тра­пе­ции равны 18 и 12, одна из бо­ко­вых сто­рон равна 6, а синус угла между ней и одним из ос­но­ва­ний равен $$\frac{1}{3}$$. Най­ди­те пло­щадь тра­пе­ции.

Ответ: 30
Скрыть

  1. Опустим высоту CE. Пусть $$\sin D=\frac{1}{3}$$, тогда из прямоугольного треугольника CED: $$CE=CD*\sin D=2$$
  2. Из формулы площади трапеции: $$S_{ABCD}=\frac{18+12}{2}*2=30$$
Аналоги к этому заданию:

Задание 1960

Пе­ри­метр рав­но­бед­рен­но­го тре­уголь­ни­ка равен 216, а бо­ко­вая сто­ро­на — 78. Най­ди­те пло­щадь тре­уголь­ни­ка.

Ответ: 2160
Скрыть
  1. Найдем основание равнобедренного треугольника : $$216-2*78=60$$
  2. Полупериметр данного треугольника: $$p=\frac{216}{2}=108$$. По формуле Герона: $$S=\sqrt{108(108-78)^{2}(108-60)}=2160$$
Аналоги к этому заданию:

Задание 1959

Бо­ко­вая сто­ро­на рав­но­бед­рен­но­го тре­уголь­ни­ка равна 34, а ос­но­ва­ние равно 60. Най­ди­те пло­щадь этого тре­уголь­ни­ка.

Ответ: 480
Скрыть
  1. Найдем полупериметр данного треугольника: $$p=\frac{34*2+60}{2}=64$$
  2. По формуле Герона: $$S=\sqrt{64(64-34)^{2}(64-60)}=480$$
Аналоги к этому заданию:

Задание 1958

В рав­но­бед­рен­ном тре­уголь­ни­ке ABC AC=BC. Най­ди­те AC, если вы­со­та CH=12, AB=10.

Ответ: 13
Скрыть

  1. По свойству высоты равнобедренного треугольника, проведенной к основанию: $$AH=HB=\frac{1}{2}AB=5$$
  2. По теореме Пифагора из треугольника ACH: $$AC=\sqrt{12^{2}+5^{2}}=13$$
Аналоги к этому заданию:

Задание 1957

В рав­но­бед­рен­ном тре­уголь­ни­ке бо­ко­вая сто­ро­на равна 10, ос­но­ва­ние — $$5(\sqrt{6}-\sqrt{2})$$, а угол, ле­жа­щий на­про­тив ос­но­ва­ния, равен 30°. Най­ди­те пло­щадь тре­уголь­ни­ка.

Ответ: 25
Скрыть

По формуле площади треугольника $$S=\frac{AB*AC*\sin B}{2}=\frac{1}{2}*10*10*\frac{1}{2}=25$$

Аналоги к этому заданию:

Задание 1956

В рав­но­бед­рен­ном тре­уголь­ни­ке бо­ко­вая сто­ро­на равна 10, а угол, ле­жа­щий на­про­тив ос­но­ва­ния, равен 120°. Най­ди­те пло­щадь тре­уголь­ни­ка, делённую на $$\sqrt{3}$$

Ответ: 25
Скрыть

По формуле площади треугольника $$S=\frac{10*10*\sin 120^{\circ}}{2}=\frac{1}{2}*10*10*\frac{\sqrt{3}}{2}=25\sqrt{3}$$. В ответе необходимо указать ответ, деленный на $$\sqrt{3}$$, то есть 25

Аналоги к этому заданию:

Задание 1955

Вы­со­та рав­но­сто­рон­не­го тре­уголь­ни­ка равна 10. Най­ди­те его пло­щадь, делённую на $$\frac{\sqrt{3}}{3}$$.

Ответ: 100
Скрыть

  1. Из треугольника ACH: $$AC=\frac{CH}{\sin A}=\frac{10}{\frac{\sqrt{3}}{2}}=\frac{20}{\sqrt{3}}$$
  2. Так как треугольник равносторонний, то AC=AB, тогда из формулы площади треугольника: $$S=\frac{1}{2}CH*AB=\frac{100}{\sqrt{3}}$$. В ответе необходимо указать результат, деленный на $$\frac{\sqrt{3}}{3}$$: $$\frac{100}{\sqrt{3}}:\frac{\sqrt{3}}{3}=100$$
Аналоги к этому заданию:

Задание 1954

Пе­ри­метр рав­но­сто­рон­не­го тре­уголь­ни­ка равен 30. Най­ди­те его пло­щадь, делённую на $$\sqrt{3}$$.

Ответ: 25
Скрыть
  1. Пусть a - сторона равностороннего треугольника, тогда $$a=\frac{P}{3}=10$$
  2. Из формулы площади треугольника: $$S=\frac{1}{2}*10*10*\sin 60^{\circ}=25\sqrt{3}$$, в ответе необходимо указать значение без $$\sqrt{3}$$, то есть 25
Аналоги к этому заданию:

Задание 1953

Сто­ро­на рав­но­сто­рон­не­го тре­уголь­ни­ка равна 10. Най­ди­те его пло­щадь, делённую на $$\sqrt{3}$$.

Ответ: 25
Скрыть

Из формулы площади треугольника: $$S=\frac{1}{2}*10*10*\sin 60^{\circ}=25\sqrt{3}$$, в ответе необходимо указать значение без $$\sqrt{3}$$, то есть 25

Аналоги к этому заданию:

Задание 1952

Два ка­те­та пря­мо­уголь­но­го тре­уголь­ни­ка равны 4 и 9. Най­ди­те пло­щадь этого тре­уголь­ни­ка.

Ответ: 18
Скрыть

По определению площади прямоугольного треугольника: $$S=\frac{1}{2}4*9=18$$

Аналоги к этому заданию:

Задание 1951

Ка­те­ты пря­мо­уголь­но­го тре­уголь­ни­ка равны 8 и 15. Най­ди­те ги­по­те­ну­зу этого тре­уголь­ни­ка.

Ответ: 17
Скрыть

По теореме Пифагора $$c=\sqrt{8^{2}+15^{2}}=17$$, где с - гипотенуза данного треугольника.

Аналоги к этому заданию:

Задание 1950

В пря­мо­уголь­ном тре­уголь­ни­ке ги­по­те­ну­за равна 70, а один из ост­рых углов равен 45°. Най­ди­те пло­щадь тре­уголь­ни­ка.

Ответ: 1225
Скрыть

  1. $$AB=AC*\sin 45^{\circ}=$$$$70*\frac{\sqrt{2}}{2}=35\sqrt{2}$$
  2. $$BC=AC*\cos 45^{\circ}=$$$$70*\frac{\sqrt{2}}{2}=35\sqrt{2}$$
  3. Площадь треугольника в таком случае: $$S=\frac{1}{2}*35\sqrt{2}*35\sqrt{2}=1225$$
Аналоги к этому заданию:

Задание 1949

В пря­мо­уголь­ном тре­уголь­ни­ке один из ка­те­тов равен 4, а ост­рый угол, при­ле­жа­щий к нему, равен 45°. Най­ди­те пло­щадь тре­уголь­ни­ка.

Ответ: 8
Скрыть

  1. Пусть BC=4, тогда $$\angle C=45^{\circ}$$, тогда $$\angle A=90-45=45^{\circ}$$, следовательно, треугольника ABC - равнобедренный и AB=BC
  2. По определению площади прямоугольного треугольника $$S=\frac{1}{2}*4*4=8$$
Аналоги к этому заданию:

Задание 1948

Най­ди­те пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка, если его катет и ги­по­те­ну­за равны со­от­вет­ствен­но 28 и 100.

Ответ: 1344
Скрыть
  1. Пусть b - второй катет, тогда по теореме Пифагора: $$b=\sqrt{100^{2}-28^{2}}=96$$
  2. По определению площади прямоугольного треугольника : $$S=\frac{1}{2}*96*28=1344$$
Аналоги к этому заданию:

Задание 1947

В пря­мо­уголь­ном тре­уголь­ни­ке один из ка­те­тов равен 10, ост­рый угол, при­ле­жа­щий к нему, равен 60°, а ги­по­те­ну­за равна 20. Най­ди­те пло­щадь тре­уголь­ни­ка, делённую на $$\sqrt{3}$$.

Ответ: 50
Скрыть

  1. Пусть AB=10, $$\angle A=60^{\circ}$$, тогда из определения тангенса $$BC=AB*tg A=10\sqrt{3}$$
  2. Из определения площади прямоугольного треуольника $$S=\frac{1}{2}*10*10\sqrt{3}=50\sqrt{3}$$, ответ необходимо указать деленный на $$\sqrt{3}$$, то есть 50
Аналоги к этому заданию:

Задание 1946

В пря­мо­уголь­ном тре­уголь­ни­ке один из ка­те­тов равен 10, а угол, ле­жа­щий на­про­тив него, равен 45°. Най­ди­те пло­щадь тре­уголь­ни­ка.

Ответ: 50
Скрыть
  1. Если один острый угол прямоугольного треугольника составляет 45 градусов, то и другой угол также равен $$90-45=45^{\circ}$$, тогда треугольник равнобедренный, и катеты равны
  2. По определению площади прямоугольного треугольника: $$S=\frac{1}{2}*10*10=50$$
Аналоги к этому заданию:

Задание 1945

На сто­ро­не BC пря­мо­уголь­ни­ка ABCD, у ко­то­ро­го AB = 12 и AD = 17, от­ме­че­на точка E так, что ∠EAB = 45°. Най­ди­те ED.

Ответ: 13
Скрыть

1) $$\angle EAB=45^{\circ}$$ и $$\angle B=90^{\circ}$$, тогда $$\angle AEB=45^{\circ}$$ (по сумме углов треугольника), следовательно, AEB - равнобедренный, и AB=BE=12

2) EC=BC-BE=17-12=5, DC=AB=12, тогда по теоереме Пифагора из треугольника DCE: $$ED=\sqrt{12^{2}+5^{2}}=13$$ 

Аналоги к этому заданию:

Задание 1944

В пря­мо­уголь­ни­ке одна сто­ро­на равна 96, а диа­го­наль равна 100. Най­ди­те пло­щадь пря­мо­уголь­ни­ка.

Ответ: 2688
Скрыть

  1) Из треугольника ABC по теореме Пифагора: $$AB=\sqrt{100^{2}-96^{2}}=28$$

  2) Из формулы площади прямоугольника: $$S=96*28=2688$$

Аналоги к этому заданию:

Задание 1943

Най­ди­те пло­щадь пря­мо­уголь­ни­ка, если его пе­ри­метр равен 60, а от­но­ше­ние со­сед­них сто­рон равно 4:11.

Ответ: 176
Скрыть
  1. Пусть меньшая сторона 4х, тогда большая сторона 11х. По определению периметра прямоугольника: $$(4x+11x)*2=60\Leftrightarrow$$$$x=2$$, тогда меньшая сторона $$4*2=8$$, большая сторона  $$11*2=22$$
  2. Из формулы площади прямоугольника $$S=8*22=176$$
Аналоги к этому заданию:

Задание 1942

Най­ди­те пло­щадь пря­мо­уголь­ни­ка, если его пе­ри­метр равен 44 и одна сто­ро­на на 2 боль­ше дру­гой.

Ответ: 120
Скрыть
  1. Пусть х - меньшая сторона, тогда х+2 - большая сторона. Из определения периметра прямоугольника: $$(x+x+2)*2=44\Leftrightarrow$$$$x=10$$, тогда меньшая сторона равна 10, большая 12
  2. Из определения площади прямоугольника: $$S=10*12=120$$
Аналоги к этому заданию:

Задание 1941

В пря­мо­уголь­ни­ке диа­го­наль равна 10, а угол между ней и одной из сто­рон равен 30°. Най­ди­те пло­щадь пря­мо­уголь­ни­ка, делённую на $$\sqrt{3}$$.

Ответ: 25
Скрыть

  1. Из треугольника ABC: пусть угол С равен 30 градусам, тогда $$AB=AC*\sin 30^{\circ}=5$$
  2. Аналогично $$BC=AC*\cos 30^{\circ}=5\sqrt{3}$$
  3. Площадь прямоугольника в таком случае: $$S=5*5\sqrt{3}=25\sqrt{3}$$, в ответе необходимо указать значение, деленное на $$\sqrt{3}$$, то есть 25
Аналоги к этому заданию:

Задание 1940

В пря­мо­уголь­ни­ке одна сто­ро­на равна 10, дру­гая сто­ро­на равна 12. Най­ди­те пло­щадь пря­мо­уголь­ни­ка.

Ответ: 120
Скрыть

По определению площади прямоугольника : $$S=10*12=120$$

Аналоги к этому заданию:

Задание 1939

Най­ди­те пло­щадь квад­ра­та, опи­сан­но­го во­круг окруж­но­сти ра­ди­у­са 83.

Ответ: 27556
Скрыть

Если квадрат описан около окружности, то диаметр окружности и сторона квадрата равны друг другу, тогда радиус окружности в два раза меньше стороны, то есть сторона квадрата $$a=2r=2*83=166$$.
Тогда площадь квадрата составляет $$S=a^{2}=166^{2}=27556$$

Аналоги к этому заданию:

Задание 1938

Най­ди­те пло­щадь квад­ра­та, если его диа­го­наль равна 1.

Ответ: 0,5
Скрыть

Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними. По свойству квадрата, его диагонали равны, а угол между ними составляет 90 градусов.
Тогда площадь квадрата составит $$S=\frac{1}{2}*1*1*\sin 90^{\circ}=0,5$$

Аналоги к этому заданию:

Задание 1937

Из квад­ра­та вы­ре­за­ли пря­мо­уголь­ник (см. ри­су­нок). Най­ди­те пло­щадь по­лу­чив­шей­ся фи­гу­ры.

Ответ: 30
Скрыть

Площадь квадрата на данном рисунке составляет $$6^{2}=36$$, площадь прямоугольника составляет $$3*2=6$$, тогда площадь оставшейся фигуры $$36-6=30$$

Аналоги к этому заданию:

Задание 1936

Пе­ри­метр квад­ра­та равен 40. Най­ди­те пло­щадь квад­ра­та.

Ответ: 100
Скрыть

Так как периметр квадрата составляет 40, тогда сторона квадрата равна $$a=\frac{P}{4}=\frac{40}{4}=10$$. Следовательно, площадь квадрата составляет $$S=a^{2}=10^{2}=100$$

Аналоги к этому заданию:

Задание 1935

Сто­ро­на квад­ра­та равна 10. Най­ди­те его пло­щадь.

Ответ: 100
Скрыть

Площадь квадрата составляет $$S=a^{2}=10^{2}=100$$

Аналоги к этому заданию:

Задание 1042

Пло­щадь па­рал­ле­ло­грам­ма ABCD равна 176. Точка E — се­ре­ди­на сто­ро­ны CD. Най­ди­те пло­щадь тре­уголь­ни­ка ADE.

Ответ: 44
Аналоги к этому заданию:

Задание 1041

Пло­щадь па­рал­ле­ло­грам­ма ABCD равна 153. Най­ди­те пло­щадь па­рал­ле­ло­грам­ма A'B'C'D', вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся се­ре­ди­ны сто­рон дан­но­го па­рал­ле­ло­грам­ма.

Ответ: 76,5
Аналоги к этому заданию:

Задание 1035

Точка пе­ре­се­че­ния бис­сек­трис двух углов па­рал­ле­ло­грам­ма, при­ле­жа­щих к одной сто­ро­не, при­над­ле­жит про­ти­во­по­лож­ной сто­ро­не. Мень­шая сто­ро­на па­рал­ле­ло­грам­ма равна 5. Най­ди­те его боль­шую сто­ро­ну.

Ответ: 10
Аналоги к этому заданию:

Задание 1034

Бис­сек­три­са ту­по­го угла па­рал­ле­ло­грам­ма делит про­ти­во­по­лож­ную сто­ро­ну в от­но­ше­нии 4 : 3, счи­тая от вер­ши­ны остро­го угла. Най­ди­те боль­шую сто­ро­ну па­рал­ле­ло­грам­ма, если его пе­ри­метр равен 88.

Ответ: 28
Аналоги к этому заданию:

Задание 1033

Две сто­ро­ны па­рал­ле­ло­грам­ма от­но­сят­ся как 3 : 4, а пе­ри­метр его равен 70. Най­ди­те боль­шую сто­ро­ну па­рал­ле­ло­грам­ма.

Ответ: 20
Аналоги к этому заданию:

Задание 1031

Най­ди­те вы­со­ту ромба, сто­ро­на ко­то­ро­го равна  $$\sqrt{3} $$ , а ост­рый угол равен 60°.

 

Ответ: 1,5
Аналоги к этому заданию:

Задание 1025

Най­ди­те пло­щадь ромба, если его вы­со­та равна 2, а ост­рый угол 30°.

Ответ: 8
Аналоги к этому заданию:

Задание 1020

Пе­ри­метр пря­мо­уголь­ни­ка равен 28, а диа­го­наль равна 10. Най­ди­те пло­щадь этого пря­мо­уголь­ни­ка.

Ответ: 48
Аналоги к этому заданию:

Задание 958

Найдите площадь ромба, если его диагонали равны 16 и 7.

Ответ: 56
Скрыть

Площадь ромба вычисляется как половина произведения его диагоналей:
S = 16 * 7 / 2 = 56

Аналоги к этому заданию:

Задание 880

Пло­щадь тре­уголь­ни­ка ABC равна 10. DE – сред­няя линия, па­рал­лель­ная сто­ро­не AB. Най­ди­те пло­щадь тра­пе­ции ABED.

 

Ответ: 7,5
Аналоги к этому заданию:

Задание 862

Пло­щадь тре­уголь­ни­ка ABC равна 4. DE  — сред­няя линия. Най­ди­те пло­щадь тре­уголь­ни­ка CDE.

Ответ: 1
Аналоги к этому заданию:

Задание 861

Най­ди­те пло­щадь тре­уголь­ни­ка, две сто­ро­ны ко­то­ро­го равны 8 и 12, а угол между ними равен 30°.

Ответ: 24
Аналоги к этому заданию:

Задание 858

В тре­уголь­ни­ке ABC $$AB=BC=AC=2\sqrt{3}$$. Най­ди­те вы­со­ту CH.

 

Ответ: 3
Аналоги к этому заданию:

Задание 798

В тре­уголь­ни­ке ABC угол равен 90°, AB = 13,  $$\tan A=\frac{1}{5}$$. Най­ди­те вы­со­ту CH.

 

Ответ: 2,5