ЕГЭ 2020. Вариант 7. Ященко 36 вариантов ФИПИ школе.
ЕГЭ 2020, полный разбор 7 варианта Ященко ФИПИ школе 36 вариантов. Решаем типовые варианты от Ященко 2020 года ЕГЭ профиль!
Больше разборов на моем ютуб-канале
Решаем 7 вариант Ященко 2020 года сборника ФИПИ школе 36 вариантов. Разбор 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 задания.
Задание 2
На диаграмме показан курс австралийского доллара, установленный Центробанком РФ на все рабочие дни марта 2019 года. По горизонтали указаны числа месяца, по вертикали — цена австралийского доллара в рублях.
Определите, на сколько рублей стала ниже цена австралийского доллара на конец марта по сравнению с началом марта 2019 года.
Задание 4
Два автомобилиста, независимо друг от друга, выезжают из пункта А в пункт В. Навигатор предлагает каждому из них 5 равноценных маршрутов, и автомобилисты выбирают маршрут случайным образом. Найдите вероятность того, что автомобилисты выберут один и тот же маршрут.
Задание 10
Расстояние от наблюдателя, находящегося на небольшой высоте h км над землёй, до наблюдаемой им линии горизонта вычисляется по формуле $$l=\sqrt{2Rh}$$, где Н=6400 км — радиус Земли. С какой высоты горизонт виден на расстоянии 64 км? Ответ выразите в километрах.
Задание 11
Смешав 31-процентный и 57-процентный растворы кислоты и добавив 10 кг чистой воды, получили 22-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 47-процентный раствор кислоты. Сколько килограммов 31-процентного раствора использовали для получения смеси?
Задание 14
Основанием пирамиды SABCD является прямоугольник ABCD со сторонами AB=15 и BC=25. Все боковые рёбра пирамиды равны $$5\sqrt{17}$$. На рёбрах AB и BC отмечены соответственно точки K и N так, что AK=CN=8. Через точки K и N проведена плоскость $$\alpha$$, перпендикулярная ребру SB.
а) Докажите, что плоскость $$\alpha$$ проходит через точку M-середину ребра SB.
б) Найдите расстояние между прямыми DS и KM
Задание 17
По бизнес-плану четырёхлетний проект предполагает начальное вложение — 25 млн рублей. По итогам каждого года планируется прирост вложенных средств на 20 % по сравнению с началом года. Начисленные проценты остаются вложенными в проект. Кроме этого, сразу после начислений процентов нужны дополнительные вложения: целое число п млн рублей и в первый, и во второй годы, а также целое число т млн рублей и в третий, и в четвёртый годы. Найдите наименьшее значение п, при котором первоначальные вложения за два года как минимум удвоятся, и наименьшее значение т, такое, что при найденном ранее значении п первоначальные вложения за четыре года вырастут как минимум в четыре раза.
Задание 19
Издательство на выставку привезло несколько книг для продажи (каждую книгу привезли в единственном экземпляре). Цена каждой книги — натуральное число рублей. Если цена книги меньше 100 рублей, на неё приклеивают бирку «выгодно». Однако до открытия выставки цену каждой книги увеличили на 10 рублей, из-за чего количество книг с бирками «выгодно» уменьшилось.
а) Могла ли уменьшиться средняя цена книг с биркой «выгодно» после открытия выставки по сравнению со средней ценой книг с биркой «выгодно» до открытия выставки?
б) Могла ли уменьшиться средняя цена книг без бирки «выгодно» после открытия выставки по сравнению со средней ценой книг без бирки «выгодно» до открытия выставки?
в) Известно, что первоначально средняя цена всех книг составляла 110 рублей, средняя цена книг с биркой «выгодно» составляла 81 рубль, а средняя цена книг без бирки — 226 рублей. После увеличения цены средняя цена книг с биркой «выгодно» составила 90 рублей, а средняя цена книг без бирки — 210 рублей. При каком наименьшем количестве книг такое возможно?
Задание 21
В ходе химической реакции масса исходного вещества (реагента), которое ещё не вступило в реакцию, постепенно уменьшается. На графике показана зависимость массы реагента от времени. На горизонтальной оси отмечено время, прошедшее с начала реакции, в минутах, на вертикальной оси - масса реагента, который ещё не вступил в реакцию, в граммах. Определите по графику, сколько граммов реагента останется через 1 минуту после начала реакции.
Задание 23
Научная конференция проводится в 4 дня. Всего запланировано 50 докладов: первые два дня по 13 докладов, остальные распределены поровну между третьим и четвёртым днями. На конференции планируется доклад профессора М. Порядок докладов определяется жеребьёвкой. Какова вероятность того, что доклад профессора М. окажется запланированным на последний день конференции?
Задание 29
Независимое агентство намерено ввести рейтинг R новостных изданий на основе показателей информативности In, оперативности Ор и объективности Тr публикаций. Каждый отдельный показатель - целое число от -1 до 1.
Составители рейтинга считают, что информативность публикаций ценится вчетверо, а объективность - вдвое дороже, чем оперативность, то есть $$R=\frac{4In+Op+2Tr}{A}.$$
Найдите, каким должно быть число А, чтобы издание, у которого все показатели максимальны, получило рейтинг 1.
Задание 30
Из пункта А в пункт В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 63 км/ч, а вторую половину пути - со скоростью, большей скорости первого на 22 км/ч, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля. Ответ дайте в км/ч.
Задание 32
а) Решите уравнение $${\sin \left(2x+\frac{2\pi }{3}\right)\ }{\cos \left(4x+\frac{\pi }{3}\right)\ }-cos2x=\frac{{{\sin }^2 x\ }}{{\rm cos}?(-\frac{\pi }{3})}$$
б) Найдите все корни этого уравнения, принадлежащие отрезку $$[-2\pi ;\ \frac{3\pi }{2}]$$
Задание 33
В правильной четырёхугольной призме $$ABCDA_1B_1C_1D_1$$ сторона основания АВ равна 2V3, а боковое ребро $$AA_1$$ равно 3. На рёбрах $$A_1D_1$$ и $$DD_1$$ отмечены соответственно точки К и М так, что $$A_1K\ =\ KD_1$$, a$$\ DM\ :\ MD_1\ =\ 2:1.$$
а) Докажите, что прямые МК и ВК перпендикулярны.
б) Найдите угол между плоскостями ВМК и $$BCC_1$$
Задание 35
На сторонах АС, АВ и ВС прямоугольного треугольника АВС с прямым углом С вне треугольника АВС построены равнобедренные прямоугольные треугольники АКС, ALB и ВМС с прямыми углами К, L и М соответственно.
а) Докажите, что LC - высота треугольника KLM.
б) Найдите площадь треугольника KLM, если $$LC\ =\ 4.$$
Задание 36
Александр хочет купить пакет акций быстрорастущей компании. В начале года у Александра не было денег на покупку акций, а пакет стоил 100 000 рублей. В середине каждого месяца Александр откладывает на покупку пакета акций одну и ту же сумму, а в конце месяца пакет дорожает, но не более чем на 30 \%. Какую наименьшую сумму нужно откладывать Александру каждый месяц, чтобы через некоторое время купить желаемый пакет акций?
Задание 38
Для каждого натурального числа n обозначим через n! произведение первых n натуральных чисел $$(1!\ =\ 1).$$
а) Существует ли такое натуральное число n, что десятичная запись числа n! оканчивается ровно 9 нулями?
б) Существует ли такое натуральное число n, что десятичная запись числа n! оканчивается ровно 23 нулями?
в) Сколько существует натуральных чисел n, меньших 100, для каждого из которых десятичная запись числа $$n!\cdot (100\ -\ n)!$$ оканчивается ровно 23 нулями?