ЕГЭ 2020. Вариант 2. Ященко 36 вариантов ФИПИ школе.
Задание 1
В магазине вся мебель продаётся в разобранном виде. Покупатель может заказать сборку мебели на дому, стоимость которой составляет 10 % от стоимости купленной мебели. Шкаф стоит 2400 рублей. Во сколько рублей обойдётся покупка этого шкафа вместе со сборкой?
Задание 4
Всего в группе туристов 51 человек, в том числе Иван и Егор. Группу случайным образом делят на три подгруппы по 17 человек для посадки в три автобуса. Известно, что Иван оказался в третьем автобусе. Какова вероятность того, что при этом условии Егор окажется в первом автобусе?
Задание 10
В телевизоре ёмкость высоковольтного конденсатора $$C=5\cdot 10^{-6}$$Ф. Параллельно с конденсатором подключён резистор с сопротивлением $$R=6\cdot 10^{6}$$ Ом. Во время работы телевизора напряжение на конденсаторе $$U_{0}$$ = 34 кВ. После выключения телевизора напряжение на конденсаторе убывает до значения U (кВ) за время, определяемое выражением $$t=\alpha RC\log_{2}\frac{U}{U_{0}}$$(c), где $$\alpha$$=1,7 — постоянная. Определите напряжение на конденсаторе, если после выключения телевизора прошла 51 с. Ответ дайте в киловольтах.
Задание 14
В правильной четырёхугольной пирамиде SABCD сторона основания AB равна 4, а боковое ребро SA равно 5. На ребре SC отмечена точка K, причём SK:KC=1:3. Плоскость а содержит точку K и параллельна плоскости SAD.
Задание 16
Точка O — центр вписанной в треугольник ABC окружности. Прямая BO вторично пересекает описанную около этого треугольника окружность в точке E.
Задание 17
15 января планируется взять кредит в банке на 49 месяцев. Условия его возврата таковы:
Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 2 млн рублей? (Считайте, что округления при вычислении платежей не производятся.)
Задание 19
В ящике лежит 58 овощей, масса каждого из которых выражается целым числом граммов. В ящике есть хотя бы два овоща различной массы, а средняя масса всех овощей равна 1000 г. Средняя масса овощей, масса каждого из которых меньше 1000 г, равна 976 г. Средняя масса овощей, масса каждого из которых больше 1000 г, равна 1036 г.
Задание 20
Диагональ экрана смартфона равна 5,7 дюйма. Выразите диагональ экрана в сантиметрах. Считайте, что 1 дюйм равен 2,54 см. Результат округлите до десятых.
Задание 21
На диаграмме показан уровень инфляции в России в 2019 году на конец каждого месяца. По горизонтали указаны месяцы, по вертикали - уровень инфляции (в процентах) с начала года на конец указанного месяца. Сколько месяцев в 2019 году инфляция в России была отрицательной?
Задание 22
В классе 26 учащихся, среди них три подружки - Оля, Аня и Юля. Класс случайным образом разбивают на 2 равные группы. Найдите вероятность того, что все три девочки окажутся в одной группе.
Задание 23
Найдите корень уравнения $$\frac{1}{5x-14}=\frac{1}{4x-3}$$.
Задание 24
Задание 25
На рисунке изображён график функции $$у = f(x)$$, определённой на интервале (-5; 9). Найдите количество решений уравнения $$f'(x) = 0$$ на отрезке [-2; 8].
Задание 26
В правильной треугольной призме $$ABCA_1B_1C_1$$ все рёбра которой равны 2, найдите угол между прямыми $$ВB_1$$ и $$AC_1$$. Ответ дайте в градусах.
Задание 27
Задание 28
Задание 29
Теплоход проходит по течению реки до пункта назначения 416 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 21 км/ч, стоянка длится 8 часов, а в пункт отправления теплоход возвращается через 50 часов. Ответ дайте в км/ч.
Пусть $$x$$ км/ч - скорость течения реки. В пути теплоход был $$50-8=42$$ часа. Тогда: $$\frac{416}{21+x}+\frac{416}{21-x}=42\leftrightarrow 416\cdot 21-416x+416\cdot 21+416x=42(441-x^2)\leftrightarrow $$ $$\leftrightarrow 42\cdot 416=\left(441-x^2\right)\cdot 42\leftrightarrow 416=441-x^2\leftrightarrow x^2=25\to x=5$$ км/ч (отрицательной быть не может)
Задание 30
Найдите точку максимума функции $$y=\left(5x-6\right){\cos x\ }-5{\sin x\ }-8$$, принадлежащую промежутку $$(0;\frac{\pi }{2})$$
Задание 31
а) Решите уравнение $${\cos 2x\ }-\sqrt{2}{\cos \left(\frac{3\pi }{2}+x\right)\ }-1=0$$.
б) Укажите корни этого уравнения, принадлежащие отрезку $$[\frac{3\pi }{2};3\pi ]$$
а) $${\cos 2x\ }-\sqrt{2}{\cos \left(\frac{3\pi }{2}+x\right)\ }-1=0\leftrightarrow 1-2{{\sin }^2 x\ }-\sqrt{2}{\sin x\ }-1=0\leftrightarrow $$ $$\leftrightarrow {\rm -2}{\sin x\ }\left({\sin x\ }+\frac{\sqrt{2}}{2}\right)=0\leftrightarrow \left[ \begin{array}{c} {\sin x\ }=0 \\ {\sin x\ }=-\frac{\sqrt{2}}{2} \end{array} \leftrightarrow \right.\left[ \begin{array}{c} x=\pi n,n\in Z \\ x=-\frac{\pi }{4}+2\pi k,k\in Z \\ x=-\frac{3\pi }{4}+2\pi k,k\in Z \end{array} \right.$$.
б) С помощью единичной окружности отберем корни: $$1)\ 2\pi -\frac{\pi }{4}=\frac{3\pi }{4};2\pi ;3\pi $$
Задание 32
В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами АВ = 8 и ВС = 6. Длины боковых рёбер пирамиды $$SA=\sqrt{21},\ SB=\sqrt{85},\ SD=\sqrt{57}$$.
а) Докажите, что SA - высота пирамиды.
б) Найдите угол между прямыми SC и BD.
а) Заметим, что $$SA^2+AB^2=21+64=85=SA^2\to SA\bot AB$$. $$SA^2+AD^2=21+36=57=SD^2\to SA\bot AD\to SA\bot \left(ABCD\right).$$
б) Пусть $$AC\cap DB=H$$. Т.к. $$ABCD$$ - прямоугольник, то $$AH=HC$$. $$AC=\sqrt{AB^2+AD^2}=10\to AH=5$$. Из $$H$$ проведем среднюю линию $$\triangle SAC\to HK\parallel SC\to SC\wedge BD=HK\wedge BD$$. $$SC=\sqrt{SA^2+AC^2}=\sqrt{21+100}=\sqrt{121}\to KH=\frac{\sqrt{121}}{2}=\frac{11}{2}.$$ $$DH=\frac{DB}{2}=\frac{AC}{2}=5. DK=\sqrt{DA^2+AK^2}=\sqrt{36+\frac{21}{4}}=\frac{\sqrt{165}}{2}. $$ $${\cos KHD\ }=\frac{KH^2+DH^2-DK^2}{2\cdot KH\cdot DH}=\frac{\frac{121}{4}+25-\frac{165}{4}}{2\cdot \frac{11}{2}\cdot 5}=\frac{221-165}{4\cdot 11\cdot 5}=\frac{14}{55}\to $$ $$\to \angle KHD=arccos\frac{14}{55}.$$
Задание 33
Решите неравенство $$x^2{{\log }_{243} (-x-3)\ }\ge {{\log }_3 (x^2+6x+9)\ }$$
Задание 34
Две окружности разных радиусов касаются внешним образом в точке С. Вершины А и В равнобедренного прямоугольного треугольника АВС с прямым углом С лежат на меньшей и большей окружностях соответственно. Прямая АС вторично пересекает большую окружность в точке Е, а прямая ВС вторично пересекает меньшую окружность в точке D.
а) Докажите, что прямые AD и BE параллельны.
б) Найдите ВС, если радиусы окружностей равны $$\sqrt{15}$$ и 15.
а) $$\angle ACD=\angle BCE$$ - вертикальные, $$\angle ACD=180{}^\circ -\angle ACB=90{}^\circ \to AD$$ и $$BE$$ - диаметры. Пусть LC - общая касательная: $$\angle LCB=\alpha \to \angle CEB=\alpha $$ (вписанный и м/у хордой и касательной, опирающиеся на одну дугу). $$\angle ACL=90-\alpha =\angle ADC\to \angle DAC=\alpha =\angle CEB\to AD\parallel BE$$ и $$\triangle ADC\sim \triangle CEB$$.
б) $$\frac{AD}{BE}=\frac{2\sqrt{15}}{2\cdot 15}=\frac{1}{\sqrt{15}}=\frac{AC}{CE}$$, но $$AC=CB\to \frac{CB}{CE}=\frac{1}{\sqrt{15}}$$. Пусть $$CB=x\to CE=\sqrt{15}x\to $$ по теореме Пифагора: $$CB^2+CE^2=BE^2\leftrightarrow x^2+15x^2={\left(15\cdot 2\right)}^2\to x^2=\frac{{15}^2\cdot 2^2}{16}\to x=7,5$$.
Задание 35
В июле 2022 года планируется взять кредит на пять лет в размере 220 тыс. рублей. Условия его возврата таковы:
- каждый январь долг возрастает на r% по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
- в июле 2023, 2024 и 2025 годов долг остаётся равным 220 тыс. рублей;
- выплаты в 2026 и 2027 годах равны;
- к июлю 2027 года долг будет выплачен полностью.
Найдите r, если известно, что долг будет выплачен полностью и общий размер выплат составит 420 тыс. рублей.
Т.к. в первые три года долг не меняется, то выплачивали только проценты.
Т.е. $$\frac{220}{100}\cdot r$$ тыс. р. Пусть платежи в последние два года по $$x$$ тыс. руб. Тогда: $$\left\{ \begin{array}{c} \left(220\left(1+\frac{r}{100}\right)-x\right)\left(1+\frac{r}{100}\right)-x=0 \\ \frac{220}{100}r\cdot 3+2x=420 \end{array} \right.\leftrightarrow$$ $$\leftrightarrow \left\{ \begin{array}{c} \left(\left(220+\frac{22r}{10}\right)-210+\frac{33r}{10}\right)\left(1+\frac{r}{100}\right)-210+\frac{33r}{10}=0 \\ x=210-\frac{33r}{10} \end{array} \right.$$. Пусть $$\frac{r}{10}=a:\left(220+22a-210+33a\right)\left(1+\frac{a}{10}\right)-210+33a=0$$. $$\left(10+55a\right)\left(1+\frac{a}{10}\right)-210+33a=0\leftrightarrow 10+a+55a+5,5a^2-210+33a=0\leftrightarrow $$ $$\leftrightarrow 5,5a^2+89a-200=0\to D=111\to \left[ \begin{array}{c} a_1=\frac{-89+111}{11}=2 \\ a_2<0 \end{array} \right.\leftrightarrow r=20$$.
Задание 36
Найдите все значения $$а$$, при каждом из которых система уравнений $$\left\{ \begin{array}{c} \sqrt{a-y^2}=\sqrt{a-x^2} \\ x^2+y^2=2x+4y \end{array} \right.$$ имеет ровно два различных решения.
Задание 37
На доске было написано несколько различных натуральных чисел. Эти числа разбили на три группы, в каждой из которых оказалось хотя бы одно число. К каждому числу из первой группы приписали справа цифру 1, к каждому числу из второй группы - цифру 8, а числа из третьей группы оставили без изменений.
а) Могла ли сумма всех этих чисел увеличиться в 4 раза?
б) Могла ли сумма всех этих чисел увеличиться в 18 раз?
в) Сумма всех этих чисел увеличилась в 11 раз. Какое наибольшее количество чисел могло быть написано на доске?
а) Пусть в первой группе $$x$$ чисел суммой $$A$$, во второй: $$y$$ суммой $$B$$ и в третьей $$Z$$ суммой $$C$$. Тогда: $$A\to 10a+x\cdot 1;B\to 10B+8y;C\to C.\ 10A+x+10B+8y+C=4(A+B+C)$$ $$\to x+8y=3C-6A-6B$$. $$\frac{x+8y}{3}=C-2A-2B$$. Пусть $$x=1;y=4$$. (1 и 2;3;4;5) тогда: $$\frac{1+32}{3}=C-2-2\cdot 14\leftrightarrow 11=C-30\to C=41$$, т.е. в третьей одно число 41 $$\to $$ может.
б) Аналогично, $$10A+x+10B+8y+C=18A+18B+18C\to x+8y=8A+8B+17C$$. Но $$x\le A$$ и $$y\le B\to x+8y\le A+8B\to $$ т.к. $$A,B,C\in N$$, то не может.
в) Аналогично, $$10A+x+10B+8y+C=11A+11B+11C\to x+8y=A+B+10C\to $$ Необходимо, чтобы $$x+y+z\to max$$. Сумма справа больше при $$y\to max$$. Тогда $$x=z=1$$.
И: 1) $$x=z=1;A=1;C=2$$. Тогда: $$1+8y\le 1+B+20\to 8y\le B+20$$. При этом минимальная сумма справа при $$B\to min$$, то есть сумма $$y$$ - последовательных натуральных чисел с 3. $$8y\le \frac{2\cdot 3+1\left(y-1\right)}{2}\cdot y+20\leftrightarrow y^2-11y+40\le 0\to D<0\to $$ решений нет.
2) $$x=z=1:A=2;C=1$$. Тогда: $$1+8y\le 2+B+10\to 8y\le B+11\leftrightarrow 8y\le \frac{2\cdot 3+1\left(y-1\right)}{2}\cdot y+11\leftrightarrow $$ $$\leftrightarrow y^2-11y+22\le 0:D=33\to \left[ \begin{array}{c} y_1=\frac{11+\sqrt{33}}{2}\in (8;9) \\ y_2=\frac{11-\sqrt{33}}{2} \end{array} \right.$$.
Тогда $$y\le 8\to y=8$$. Тогда всего чисел 10. Приведем пример: Пусть 1-ая группа: 2, третья: 1; вторая: 3,4,5,6,7,8,9,m. Получим: $$1+8\cdot 8=2+42+m+10\leftrightarrow m=65-54=11$$.